REFERENCES

1. Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017;29:1601727.

2. Luo H, Zhou X, Ellingford C, et al. Interface design for high energy density polymer nanocomposites. Chem Soc Rev 2019;48:4424-65.

3.  Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 2016;116:4260-317.

4. Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.

5. Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121:6124-72.

6. Pan H, Kursumovic A, Lin YH, Nan CW, MacManus-Driscoll JL. Dielectric films for high performance capacitive energy storage: multiscale engineering. Nanoscale 2020;12:19582-91.

7. Wei J, Zhu L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog Polym Sci 2020;106:101254.

8. Tan DQ. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv Funct Mater 2020;30:1808567.

9. Zhang G, Li Q, Allahyarov E, Li Y, Zhu L. Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl Mater Interfaces 2021;13:37939-60.

10. Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015;523:576-9.

11. Zhang X, Li BW, Dong L, et al. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv Mater Interfaces 2018;5:1800096.

12. Hu H, Zhang F, Luo S, Chang W, Yue J, Wang CH. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 2020;74:104844.

13. McPherson JW, Kim J, Shanware A, Mogul H, Rodriguez J. Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE Trans Electron Devices 2003;50:1771.

14. Chen Q, Shen Y, Zhang S, Zhang Q. Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res 2015;45:433-58.

15. Palneedi H, Peddigari M, Hwang GT, Jeong DY, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018;28:1803665.

16. Veerapandiyan V, Benes F, Gindel T, Deluca M. Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review. Materials (Basel) 2020;13:E5742.

17. Yang Z, Du H, Jin L, Poelman D. High-performance lead-free bulk ceramics for energy storage applications: design strategies and challenges. J Mater Chem A Mater 2021;9:18026-85.

18. Pramanick A, Nayak S. Perspective on emerging views on microscopic origin of relaxor behavior. J Mater Res 2021;36:1015-36.

19. Liu Z, Lu T, Ye J, et al. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3:1800111.

20. Li F, Zhang S, Damjanovic D, Chen LQ, Shrout TR. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv Funct Mater 2018;28:1801504.

21. Yao FZ, Yuan Q, Wang Q, Wang H. Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films. Nanoscale 2020;12:17165-84.

22. Pan H, Ma J, Ma J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 2018;9:1813.

23. Li D, Zeng X, Li Z, et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 2021;10:675-703.

24. Zhang H, Wei T, Zhang Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C Mater 2020;8:16648-67.

25. Huang X, Sun B, Zhu Y, Li S, Jiang P. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 2019;100:187-225.

26. Huan TD, Boggs S, Teyssedre G, et al. Advanced polymeric dielectrics for high energy density applications. Prog Mater Sci 2016;83:236-69.

27. Fan B, Zhou M, Zhang C, He D, Bai J. Polymer-based materials for achieving high energy density film capacitors. Prog Polym Sci 2019;97:101143.

28. Jiang Y, Zhou M, Shen Z, et al. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Materials 2021;9:020905.

29. Sun Z, Wang Z, Tian Y, et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv Electron Mater 2020;6:1900698.

30. Dong R, Ranjan V, Nardelli MB, Bernholc J. Atomistic simulations of aromatic polyurea and polyamide for capacitive energy storage. Phys Rev B 2015;92:024203.

31. Zhang Q, Chen X, Zhang B, et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 2021;4:2448-59.

32. Saiz F, Quirke N. The excess electron in polymer nanocomposites. Phys Chem Chem Phys 2018;20:27528-38.

33. Shi N, Ramprasad R. Local properties at interfaces in nanodielectrics: an ab initio computational study. IEEE Trans Dielectr Electr Insul 2008;15:170.

34. Shen ZH, Wang JJ, Jiang JY, et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat Commun 2019;10:1843.

35. Cai Z, Zhu C, Wang X, Li L. Phase-field modeling of the coupled domain structure and dielectric breakdown evolution in a ferroelectric single crystal. Phys Chem Chem Phys 2019;21:16207-12.

36. Wang JJ, Wang B, Chen LQ. Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method. Annu Rev Mater Res 2019;49:127-52.

37. Kim J, Saremi S, Acharya M, et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020;369:81-4.

38. Zhao Y, Ouyang J, Wang K, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Stor Mater 2021;39:81-8.

39. Xie J, Liu H, Yao Z, et al. Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors via amorphous-structure engineering. J Mater Chem C Mater 2019;7:13632-9.

40. Otoničar M, Bradeško A, Fulanović L, et al. Connecting the multiscale structure with macroscopic response of relaxor ferroelectrics. Adv Funct Mater 2020;30:2006823.

41. Yang Z, Gao F, Du H, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 2019;58:768-77.

42. Yuan Q, Li G, Yao FZ, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.

43. Wang G, Li J, Zhang X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ Sci 2019;12:582-8.

44. Zhao P, Cai Z, Chen L, et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy Environ Sci 2020;13:4882-90.

45. Morozovska AN, Eliseev EA, Fomichov YM, et al. Controlling the domain structure of ferroelectric nanoparticles using tunable shells. Acta Mater 2020;183:36-50.

46. Yan F, Bai H, Shi Y, et al. Sandwich structured lead-free ceramics based on Bi0.5Na0.5TiO3 for high energy storage. Chem Eng J 2021;425:130669.

47. Wu L, Cai Z, Zhu C, Feng P, Li L, Wang X. Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: Phase-field simulation and experimental realization. Appl Phys Lett 2020;117:212902.

48. Zhu D, Mangeri J, Wang R, Nakhmanson S. Size, shape, and orientation dependence of the field-induced behavior in ferroelectric nanoparticles. J Appl Phys 2019;125:134102.

49. Wang K, Ouyang J, Wuttig M, et al. Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors. Adv Energy Mater 2020;10:2001778.

50. Kwon O, Seol D, Lee D, et al. Direct probing of polarization charge at nanoscale level. Adv Mater 2018;30:1703675.

51. Dittmer R, Jo W, Rdel J, Kalinin S, Balke N. Nanoscale insight into lead-free BNT-BT-xKNN. Adv Funct Mater 2012;22:4208-15.

52. Wei Y, Wang X, Zhu J, Wang X, Damjanovic D. Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J Am Ceram Soc 2013;96:3163-8.

53. Sharma S, Singh V, Dwivedi RK. Electrical properties of (1-x) BFO-(x) PZT multiferroics synthesized by sol-gel method: transition from relaxor to non-relaxor. J Alloys Compd 2016;682:723-9.

54. Pan H, Zeng Y, Shen Y, et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J Mater Chem A 2017;5:5920-6.

55. Zhou M, Liang R, Zhou Z, Dong X. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 2018;6:8528-37.

56. Wang J, Shi SQ, Chen LQ, Li Y, Zhang TY. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 2004;52:749-64.

57. Wang J, Ma X, Li Q, Britson J, Chen LQ. Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater 2013;61:7591-603.

58. Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578-82.

59. Wang JJ, Su YJ, Wang B, Ouyang J, Ren YH, Chen LQ. Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors. Nano Energy 2020;72:104665.

60. Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett 1996;15:1767-9.

61. Cai Z, Wang X, Hong W, Luo B, Zhao Q, Li L. Grain-size-dependent dielectric properties in nanograin ferroelectrics. J Am Ceram Soc 2018;101:5487-96.

62. O’Dwyer JJ. Theory of dielectric breakdown in solids. J Electrochem Soc 1969;116:239.

63. Chaitanya Pitike K, Hong W. Phase-field model for dielectric breakdown in solids. J Appl Phys 2014;115:044101.

64. Niemeyer L, Pietronero L, Wiesmann HJ. Fractal dimension of dielectric breakdown. Phys Rev Lett 1984;52:1033.

65. Sparks M, Mills D, Warren R, et al. Theory of electron-avalanche breakdown in solids. Phys Rev B 1981;24:3519.

66. Liu M, Cao M, Zeng F, et al. Fine-grained silica-coated barium strontium titanate ceramics with high energy storage. Ceram Int 2018;44:20239-44.

67. Li C, Yao M, Gao W, Yao X. High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer. Ceram Int 2020;46:722-73.

68. Wu L, Wang X, Li L. Enhanced energy density in core-shell ferroelectric ceramics: modeling and practical conclusions. J Am Ceram Soc 2016;99:930-7.

69. Yuan Q, Yao FZ, Cheng SD, et al. Bioinspired hierarchically structured all-inorganic nanocomposites with significantly improved capacitive performance. Adv Funct Mater 2020;30:2000191.

70. Shindo Y, Yoshida M, Narita F, Horiguchi K. Electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators: experiment and finite element simulation. J Mech Phys Solids 2004;52:1109-24.

71. Li F, Jin L, Xu Z, Zhang S. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl Phys Rev 2014;1:011103.

72. Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020;19:999-1005.

73. Lv P, Yang C, Qian J, et al. Flexible lead-free perovskite oxide multilayer film capacitor based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for high-performance dielectric energy storage. Adv Energy Mater 2020;10:1904229.

74. Sun Z, Wang L, Liu M, et al. Interface thickness optimization of lead-free oxide multilayer capacitors for high-performance energy storage. J Mater Chem A 2018;6:1858-64.

75. Wang Y, Chen J, Li Y, Niu Y, Wang Q, Wang H. Multilayered hierarchical polymer composites for high energydensity capacitors. J Mater Chem A 2019;7:2965-80.

76. Sun Z, Ma C, Liu M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater 2017;29:1604427.

77. Fan Q, Liu M, Ma C, et al. Significantly enhanced energy storage density with superior thermal stability by optimizing Ba (Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 2018;51:539-45.

78. Liu Y, Zhang B, Xu W, et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat Mater 2020;19:1169-74.

79. Cheng ZY, Zhang Q, Bateman FB. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly (vinylidene fluoride-trifluoroethylene) copolymers. J Appl Phys 2002;92:6749.

80. Chen X, Tseng JK, Treufeld I, et al. Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films. J Mater Chem C 2017;5:10417-26.

81. Huang Y, Rui G, Li Q, et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly (vinylidene fluoride) with pure β crystals. Nat Commun 2021;12:675.

82. Guo M, Guo C, Han J, et al. Toroidal polar topology in strained ferroelectric polymer. Science 2021;371:1050-6.

83. Meng N, Ren X, Santagiuliana G, et al. Ultrahigh β-phase content poly (vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun 2019;10:4535.

84. Zhan C, Lian C, Zhang Y, et al. Computational insights into materials and interfaces for capacitive energy storage. Adv Sci 2017;4:1700059.

85. Schadler LS, Chen W, Brinson LC, et al. A perspective on the data-driven design of polymer nanodielectrics. J Phys D Appl Phys 2020;53:333001.

86. Sharma V, Wang C, Lorenzini RG, et al. Rational design of all organic polymer dielectrics. Nat Commun 2014;5:4845.

87. Ma R, Baldwin AF, Wang C, et al. Rationally designed polyimides for high-energy density capacitor applications. ACS Appl Mater Interfaces 2014;6:10445-51.

88. Ma R, Sharma V, Baldwin AF, et al. Rational design and synthesis of polythioureas as capacitor dielectrics. J Mater Chem A 2015;3:14845-52.

89. Sun Y, Boggs S, Ramprasad R. The intrinsic electrical breakdown strength of insulators from first principles. Appl Phys Lett 2012;101:132906.

90. Wang C, Pilania G, Boggs S, Kumar S, Breneman C, Ramprasad R, et al. Computational strategies for polymer dielectrics design. Polymer 2014;55:979-88.

91. Thakur Y, Zhang B, Dong R, et al. Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy 2017;32:73-9.

92. Yuan C, Zhou Y, Zhu Y, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat Commun 2020;11:3919.

93. Luo B, Wang X, Wang H, Cai Z, Li L. P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Compos Sci Technol 2017;151:94-103.

94. Zhang X, Shen Y, Shen Z, Jiang J, Chen L, Nan CW. Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength. ACS Appl Mater Interfaces 2016;8:27236-42.

95. Zhang X, Jiang Y, Gao R, et al. Tuning ferroelectricity of polymer blends for flexible electrical energy storage applications. Sci China Mater 2021;64:1642-52.

96. Qian X, Ye HJ, Yang T, et al. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Adv Funct Mater 2015;25:5134-9.

97. Jiang J, Shen Z, Qian J, et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Stor Mater 2019;18:213-21.

98. Zhang T, Dan Z, Shen Z, et al. An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites. RSC Adv 2020;10:5886-93.

99. Li Q, Cheng S. Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress. IEEE Electr Insul Mag 2020;36:7-28.

100. Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 2012;45:2937-54.

101. Claude J, Lu Y, Li K, Wang Q. Electrical storage in poly (vinylidene fluoride) based ferroelectric polymers: correlating polymer structure to electrical breakdown strength. Chem Mater 2008;20:2078-80.

102. Tan DQ. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J Appl Polym Sci 2020;137:49379.

103. Kim P, Jones SC, Hotchkiss PJ, et al. Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 2007;19:1001-5.

104. Xie B, Zhu Y, Marwat MA, Zhang S, Zhang L, Zhang H. Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. J Mater Chem A 2018;6:20356-64.

105. Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 2009;21:217-21.

106. Zhang X, Chen W, Wang J, et al. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers. Nanoscale 2014;6:6701-9.

107. Liu J, Shen Z, Xu W, et al. Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small 2020;16:2000714.

108. Wang P, Pan Z, Wang W, et al. Ultrahigh energy storage performance of a polymer-based nanocomposite via interface engineering. J Mater Chem A 2021;9:3530-9.

109. Zhang H, Marwat MA, Xie B, et al. Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Appl Mater Interfaces 2019;12:1-37.

110. Zhang X, Jiang J, Shen Z, et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv Mater 2018;30:1707269.

111. Bao Z, Hou C, Shen Z, et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites. Adv Mater 2020;32:1907227.

112. Li H, Ai D, Ren L, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv Mater 2019;31:1900875.

113. Guo R, Roscow JI, Bowen CR, et al. Significantly enhanced permittivity and energy density in dielectric composites with aligned BaTiO3 lamellar structures. J Mater Chem A 2020;8:3135-44.

114. Zhou Y, Li Q, Dang B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv Mater 2018;30:1805672.

115. Zhu Y, Zhu Y, Huang X, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv Energy Mater 2019;9:1901826.

116. Shen ZH, Wang JJ, Jiang JY, et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv Energy Mater 2018;8:1800509.

117. Ma FD, Wang YU. Depolarization field effect on dielectric and piezoelectric properties of particulate ferroelectric ceramic-polymer composites. J Appl Phys 2015;117:124101.

118. Lewis TJ. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 2004;11:739-53.

119. Roy M, Nelson J, MacCrone R, Schadler LS, Reed C, Keefe R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans Dielectr Electr Insul 2005;12:629-43.

120. Tanaka T, Kozako M, Fuse N, Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 2005;12:669-81.

121. Shen ZH, Wang JJ, Zhang X, et al. Space charge effects on the dielectric response of polymer nanocomposites. Appl Phys Lett 2017;111:092901.

122. Pan Z, Zhai J, Shen B. Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J Mater Chem A 2017;5:15217-26.

123. Shen ZH, Shen Y, Cheng XX, Liu HX, Chen LQ, Nan CW. High-throughput data-driven interface design of high-energy-density polymer nanocomposites. J Materiomics 2020;6:573-81.

124. Shen ZH, Wang JJ, Lin Y, Nan CW, Chen LQ, Shen Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv Mater 2018;30:1704380.

125. Shen ZH, Bao ZW, Cheng XX, et al. Designing polymer nanocomposites with high energy density using machine learning. NPJ Comput Mater 2021;7:110.

126. Tang H, Lin Y, Sodano HA. Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2012;2:469-76.

127. Luo S, Yu J, Yu S, et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv Energy Mater 2019;9:1803204.

128. Fan L, Yang D, Huang L, Fan M, Lei C, Fu Q. Polymer nanocomposite with enhanced energy storage capacity by introducing hierarchically-designed 1-dimension hybrid nanofiller. Polymer 2020;201:122608.

129. Pan Z, Yao L, Zhai JW, Fu D, Shen B, Wang H. High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl Mater Interfaces 2017;9:4024-33.

130. Luo B, Shen Z, Cai Z, et al. Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv Funct Mater 2021;31:2007994.

131. Jiang J, Shen Z, Cai X, et al. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv Energy Mater 2019;9:1803411.

132. Azizi A, Gadinski MR, Li Q, et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv Mater 2017;29:1701864.

133. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. Adv Mater 2015;27:6658-63.

134. Jiang J, Shen Z, Qian J, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019;62:220-9.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/