REFERENCES

1. Bowen CR, Kim HA, Weaver PM, Dunn S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 2014;7:25-44.

2. Wang Y, Ganpule C, Liu BT, et al. Epitaxial ferroelectric Pb(Zr, Ti)O3 thin films on Si using SrTiO3 template layers. Appl Phys Lett 2002;80:97-9.

3. Grigoriev A, Do DH, Kim DM, et al. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O(3) thin films. Phys Rev Lett 2006;96:187601.

4. Jia CL, Urban KW, Alexe M, Hesse D, Vrejoiu I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 2011;331:1420-3.

5. Wang T, Jin L, Li C, Hu Q, Wei X, Lupascu D. Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 2015;98:559-66.

6. Merz WJ. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. J Appl Phys 1956;27:938-43.

7. Bellaiche L, Vanderbilt D. Intrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZT. Phys Rev Lett 1999;83:1347-50.

8. Hwang GT, Park H, Lee JH, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater 2014;26:4880-7.

9. Xu S, Yeh YW, Poirier G, McAlpine MC, Register RA, Yao N. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett 2013;13:2393-8.

10. Izyumskaya N, Alivov Y, Cho S, Morkoç H, Lee H, Kang Y. Processing, structure, properties, and applications of PZT thin films. Crit Rev Solid State Mater Sci 2007;32:111-202.

11. Khan AI, Keshavarzi A, Datta S. The future of ferroelectric field-effect transistor technology. Nat Electron 2020;3:588-97.

12. Monga S, Tomar S, Vilarinho PM, Singh A. Effect of substrates on optical properties of ferroelectric PZT (52/48) thin films. Mater Today Proc 2021;36:616-20.

13. Long P, Chen C, Pang D, Liu X, Yi Z. Optical, electrical, and photoelectric properties of nitrogen-doped perovskite ferroelectric BaTiO 3 ceramics. J Am Ceram Soc 2019;102:1741-7.

14. Shvartsman VV, Lupascu DC, Green DJ. Lead-free relaxor ferroelectrics. J Am Ceram Soc 2012;95:1-26.

15. Cartier E, Kerber A, Ando, T, et al. . Fundamental aspects of HfO2-based high-k metal gate stack reliability and implications on tinv-scaling. 2011 International Electron Devices Meeting; 2011 Dec 5-7; Washington, DC, USA. IEEE; 2011. p. 18.4.1-18.4.4.

16. Böscke TS, Müller J, Bräuhaus D, Schröder U, Böttger U. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 2011;99:102903.

17. Böscke TS, Müller J, Bräuhaus D, Schröder U, Böttger U. . Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors. 2011 International Electron Devices Meeting; 2011 Dec 5-7; Washington, DC, USA. IEEE; 2011. p. 24.5.1-24.5.4.

18. Böscke TS, Teichert S, Bräuhaus D, et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl Phys Lett 2011;99:112904.

19. Müller J, Schröder U, Böscke TS, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys 2011;110:114113.

20. Mueller S, Mueller J, Singh A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater 2012;22:2412-7.

21. Olsen T, Schröder U, Müller S, et al. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl Phys Lett 2012;101:082905.

22. Schenk T, Schroeder U, Pešić M, Popovici M, Pershin YV, Mikolajick T. Electric field cycling behavior of ferroelectric hafnium oxide. ACS Appl Mater Interfaces 2014;6:19744-51.

23. Hoffmann M, Schroeder U, Künneth C, et al. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 2015;18:154-64.

24. Hoffmann M, Pešić M, Chatterjee K, et al. Direct observation of negative capacitance in polycrystalline ferroelectric HfO2. Adv Funct Mater 2016;26:8643-9.

25. Pešić M, Fengler FPG, Larcher L, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv Funct Mater 2016;26:4601-12.

26. Park MH, Schenk T, Hoffmann M, et al. Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications. Nano Energy 2017;36:381-9.

27. Baumgarten L, Szyjka T, Mittmann T, et al. Impact of vacancies and impurities on ferroelectricity in PVD- and ALD-grown HfO2 films. Appl Phys Lett 2021;118:032903.

28. Mikolajick T, Schroeder U. Ferroelectricity in bulk hafnia. Nat Mater 2021;20:718-9.

29. Wei Y, Nukala P, Salverda M, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat Mater 2018;17:1095-100.

30. Nukala P, Ahmadi M, Wei Y, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 2021;372:630-5.

31. Park MH, Kim HJ, Kim YJ, Moon T, Kim KD, Hwang CS. Thin HfxZr1-xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv Energy Mater 2014;4:1400610.

32. Sang X, Grimley ED, Schenk T, Schroeder U, Lebeau JM. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett 2015;106:162905.

33. Grimley ED, Schenk T, Sang X, et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv Electron Mater 2016;2:1600173.

34. Xu X, Huang FT, Qi Y, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat Mater 2021;20:826-32.

35. Mimura T, Shimizu T, Funakubo H. Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness. Appl Phys Lett 2019;115:032901.

36. Müller J, Polakowski P, Mueller S, Mikolajick T. Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS J Solid State Sci Technol 2015;4:N30-5.

37. Clima S, Wouters DJ, Adelmann C, et al. Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: a first principles insight. Appl Phys Lett 2014;104:092906.

38. Huan TD, Sharma V, Rossetti GA, Ramprasad R. Pathways towards ferroelectricity in hafnia. Phys Rev B 2014:90.

39. Falkowski M, Künneth C, Materlik R, Kersch A. Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations. npj Comput Mater 2018:4.

40. Lee HJ, Lee M, Lee K, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020;369:1343-7.

41. Qi Y, Singh S, Lau C, et al. Stabilization of competing ferroelectric phases of HfO_{2} under epitaxial strain. Phys Rev Lett 2020;125:257603.

42. Cheynet MC, Pokrant S, Tichelaar FD, Rouvière J. Crystal structure and band gap determination of HfO2 thin films. J Appl Phys 2007;101:054101.

43. Starschich S, Griesche D, Schneller T, Waser R, Böttger U. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes. Appl Phys Lett 2014;104:202903.

44. Mulaosmanovic H, Ocker J, Müller S, et al. Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl Mater Interfaces 2017;9:3792-8.

45. Schroeder U, Yurchuk E, Müller J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn J Appl Phys 2014;53:08LE02.

46. Das D, Gaddam V, Jeon S. Demonstration of high ferroelectricity (Pr ~ 29 μC/cm2) in Zr rich HfxZr1-xO2 films. IEEE Electron Device Lett 2020;41:34-7.

47. Kim SJ, Mohan J, Lee J, et al. Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400 °C) Hf0.5Zr0.5O2 films. Appl Phys Lett 2018;112:172902.

48. Kozodaev MG, Chernikova AG, Korostylev EV, et al. Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping. J Appl Phys 2019;125:034101.

49. Lyu X, Si M, Shrestha PR, et al. . Record fast polarization switching observed in ferroelectric hafnium oxide crossbar arrays. 2020 IEEE Silicon Nanoelectronics Workshop (SNW); 2020 Jun 13-14; Honolulu, HI, USA. IEEE; 2020. p. 7-8.

50. Yurchuk E, Müller J, Knebel S, et al. Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films. Thin Solid Films 2013;533:88-92.

51. Park MH, Lee YH, Kim HJ, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater 2015;27:1811-31.

52. Müller J, Böscke TS, Bräuhaus D, et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl Phys Lett 2011;99:112901.

53. Hoffmann M, Schroeder U, Schenk T, et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J Appl Phys 2015;118:072006.

54. Starschich S, Menzel S, Böttger U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl Phys Lett 2016;108:032903.

55. Mittmann T, Michailow M, Lomenzo PD, et al. Stabilizing the ferroelectric phase in HfO2-based films sputtered from ceramic targets under ambient oxygen. Nanoscale 2021;13:912-21.

56. Materano M, Mittmann T, Lomenzo PD, et al. Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1-xO2 layers. ACS Appl Electron Mater 2020;2:3618-26.

57. Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model. J Appl Phys 2015;117:134109.

58. Ding W, Zhang Y, Tao L, Yang Q, Zhou Y. The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study. Acta Materialia 2020;196:556-64.

59. Chen Z, Liao X, Zhang S. The visible hand behind properties. Microstructures 2021;1:2021001.

60. Chen Z, Wang X, Ringer SP, Liao X. Manipulation of nanoscale domain switching using an electron beam with omnidirectional electric field distribution. Phys Rev Lett 2016;117:027601.

61. Chen Z, Hong L, Wang F, et al. Facilitation of ferroelectric switching via mechanical manipulation of hierarchical nanoscale domain structures. Phys Rev Lett 2017;118:017601.

62. Park MH, Lee DH, Yang K, et al. Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices. J Mater Chem C 2020;8:10526-50.

63. Shimizu T, Katayama K, Kiguchi T, Akama A, Konno TJ, Funakubo H. Growth of epitaxial orthorhombic YO1.5-substituted HfO2 thin film. Appl Phys Lett 2015;107:032910.

64. Shimizu T, Katayama K, Kiguchi T, et al. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film. Sci Rep 2016;6:32931.

65. Lyu J, Fina I, Fontcuberta J, Sánchez F. Epitaxial integration on Si(001) of ferroelectric Hf0.5Zr0.5O2 capacitors with high retention and endurance. ACS Appl Mater Interfaces 2019;11:6224-9.

66. Zhang Z, Hsu SL, Stoica VA, et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 with metallic pyrochlore oxide electrodes. Adv Mater 2021;33:e2006089.

67. Estandía S, Dix N, Gazquez J, et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress. ACS Appl Electron Mater 2019;1:1449-57.

68. Estandía S, Dix N, Chisholm MF, Fina I, Sánchez F. Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2 (111) on La2/3Sr1/3MnO3 (001). Crystal Growth & Design 2020;20:3801-6.

69. Lyu J, Song T, Fina I, Sánchez F. High polarization, endurance and retention in sub-5 nm Hf0.5Zr0.5O2 films. Nanoscale 2020;12:11280-7.

70. Lyu J, Fina I, Bachelet R, et al. Enhanced ferroelectricity in epitaxial Hf0.5Zr0.5O2 thin films integrated with Si(001) using SrTiO3 templates. Appl Phys Lett 2019;114:222901.

71. Jesse S, Rodriguez BJ, Choudhury S, et al. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat Mater 2008;7:209-15.

72. Arlt G. The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 1990;104:217-27.

73. Wu H, Zhang Y, Wu J, Wang J, Pennycook SJ. Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv Funct Mater 2019;29:1902911.

74. Müller J, Böscke TS, Schröder U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett 2012;12:4318-23.

75. Starschich S, Boettger U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2. J Mater Chem C 2017;5:333-8.

76. Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T, Seong Hwang C. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl Phys Lett 2013;102:242905.

77. Park MH, Kim HJ, Kim YJ, et al. Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling. Appl Phys Lett 2015;107:192907.

78. Batra R, Tran HD, Ramprasad R. Stabilization of metastable phases in hafnia owing to surface energy effects. Appl Phys Lett 2016;108:172902.

79. Nukala P, Wei Y, de Haas V, Guo Q, Antoja-lleonart J, Noheda B. Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0.5Zr0.5O2 thin films. Ferroelectrics 2020;569:148-63.

80. Estandía S, Gàzquez J, Varela M, et al. Critical effect of the bottom electrode on the ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films. J Mater Chem C 2021;9:3486-92.

81. Hwang CS. Prospective of semiconductor memory devices: from memory system to materials. Adv Electron Mater 2015;1:1400056.

82. Fan Z, Chen J, Wang J. Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J Adv Dielect 2016;06:1630003.

83. Schroeder U, Slesazeck S, Mikolajick T. . Nonvolatile field-effect transistors using ferroelectric doped HfO2 films. In: Park B, Ishiwara H, Okuyama M, Sakai S, Yoon S, editors. Ferroelectric-gate field effect transistor memories. Dordrecht: Springer Netherlands; 2016. p. 57-72.

84. Park MH, Lee YH, Mikolajick T, Schroeder U, Hwang CS. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Communications 2018;8:795-808.

85. Kim SJ, Mohan J, Summerfelt SR, Kim J. Ferroelectric Hf0.5Zr0.5O2 thin films: a review of recent advances. JOM 2019;71:246-55.

86. Ali F, Zhou D, Sun N, et al. Fluorite-structured ferroelectric-/antiferroelectric-based electrostatic nanocapacitors for energy storage applications. ACS Appl Energy Mater 2020;3:6036-55.

87. Cao J, Shi S, Zhu Y, Chen J. An overview of ferroelectric hafnia and epitaxial growth. Phys Status Solidi RRL 2021;15:2100025.

88. Fina I, Sánchez F. Epitaxial ferroelectric HfO2 films: growth, properties, and devices. ACS Appl Electron Mater 2021;3:1530-49.

89. Materano M, Lomenzo PD, Kersch A, Park MH, Mikolajick T, Schroeder U. Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics. Inorg Chem Front 2021;8:2650-72.

90. Curtis CE, Doney LM, Johnson JR. Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. J American Ceramic Society 1954;37:458-65.

91. Tang J, Kai M, Kobayashi Y, et al. . A high-pressure high-temperature X ray study of phase relations and polymorphism of HfO2. In: Manghnani MH, Yagi T, editors. Properties of Earth and Planetary Materials at High Pressure and Temperature. Washington: American Geophysical Union; 1998. p. 401-7.

92. Ohtaka O, Fukui H, Kunisada T, et al. Phase relations and volume changes of hafnia under high pressure and high temperature. J Am Ceram Soc 2001;84:1369-73.

93. Polakowski P, Müller J. Ferroelectricity in undoped hafnium oxide. Appl Phys Lett 2015;106:232905.

94. Pal A, Narasimhan VK, Weeks S, Littau K, Pramanik D, Chiang T. Enhancing ferroelectricity in dopant-free hafnium oxide. Appl Phys Lett 2017;110:022903.

95. Luo J, Zhang H, Wang Z, et al. Improvement of ferroelectric properties in undoped hafnium oxide thin films using thermal atomic layer deposition. Jpn J Appl Phys 2019;58:SDDE07.

96. Ruh R, Corfield PWR. Crystal structure of monoclinic hafnia and comparison with monoclinic zirconia. J Am Ceram Soc 1970;53:126-9.

97. Stacy DW, Wilder DR. The yttria-hafnia system. J Am Ceram Soc 1975;58:285-8.

98. Adams DM, Leonard S, Russell DR, Cernik RJ. X-ray diffraction study of Hafnia under high pressure using synchrotron radiation. J Phys Condens Matter 1991;52:1181-6.

99. Luo Q, Cheng Y, Yang J, et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat Commun 2020;11:1391.

100. Kozodaev MG, Chernikova AG, Korostylev EV, et al. Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition. Appl Phys Lett 2017;111:132903.

101. Park MH, Lee YH, Kim HJ, et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. Nanoscale 2017;9:9973-86.

102. Lee YH, Kim HJ, Moon T, et al. Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering. Nanotechnology 2017;28:305703.

103. Hsain HA, Lee Y, Materano M, et al. Many routes to ferroelectric HfO2: a review of current deposition methods. Journal of Vacuum Science & Technology A 2022;40:010803.

104. Starschich S, Griesche D, Schneller T, Böttger U. Chemical solution deposition of ferroelectric hafnium oxide for future lead free ferroelectric devices. ECS J Solid State Sci Technol 2015;4:P419-23.

105. Shimura R, Mimura T, Shimizu T, Tanaka Y, Inoue Y, Funakubo H. Preparation of near-1-µm-thick {100}-oriented epitaxial Y-doped HfO2 ferroelectric films on (100)Si substrates by a radio-frequency magnetron sputtering method. J Ceram Soc Japan 2020;128:539-43.

106. Suzuki T, Shimizu T, Mimura T, Uchida H, Funakubo H. Epitaxial ferroelectric Y-doped HfO2 film grown by the RF magnetron sputtering. Jpn J Appl Phys 2018;57:11UF15.

107. Reichelt K, Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films 1990;191:91-126.

108. Mittmann T, Materano M, Lomenzo PD, et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Adv Mater Interfaces 2019;6:1900024.

109. Mimura T, Shimizu T, Uchida H, Funakubo H. Room-temperature deposition of ferroelectric HfO2-based films by the sputtering method. Appl Phys Lett 2020;116:062901.

110. Bretos I, Jiménez R, Wu A, Kingon AI, Vilarinho PM, Calzada ML. Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv Mater 2014;26:1405-9.

111. Schwartz RW. Chemical solution deposition of perovskite thin films. Chem Mater 1997;9:2325-40.

112. Hodes G. . Chemical solution deposition of semiconductor films. 1st ed. New York: CRC press; 2002.

113. Batra R, Huan TD, Rossetti GA, Ramprasad R. Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration. Chem Mater 2017;29:9102-9.

114. Xu L, Nishimura T, Shibayama S, Yajima T, Migita S, Toriumi A. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. J Appl Phys 2017;122:124104.

115. Park M, Joon Kim H, Jin Kim Y, Moon T, Seong Hwang C. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl Phys Lett 2014;104:072901.

116. Lomenzo PD, Takmeel Q, Zhou C, et al. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J Appl Phys 2015;117:134105.

117. Shiraishi T, Katayama K, Yokouchi T, et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl Phys Lett 2016;108:262904.

118. Zhou D, Xu J, Li Q, et al. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl Phys Lett 2013;103:192904.

119. Chouprik A, Zakharchenko S, Spiridonov M, et al. Ferroelectricity in Hf0.5Zr0.5O2 thin films: a microscopic study of the polarization switching phenomenon and field-induced phase transformations. ACS Appl Mater Interfaces 2018;10:8818-26.

120. Fengler F, Park MH, Schenk T, Pešić M, Schroeder U. . Field cycling behavior of ferroelectric HfO2-based capacitors. Ferroelectricity in doped hafnium oxide: materials, properties and devices. Elsevier; 2019. p. 381-98.

121. Fields SS, Smith SW, Ryan PJ, et al. Phase-exchange-driven wake-up and fatigue in ferroelectric hafnium zirconium oxide films. ACS Appl Mater Interfaces 2020;12:26577-85.

122. Park MH, Chung C, Schenk T, et al. Origin of temperature-dependent ferroelectricity in Si-doped HfO2. Adv Electron Mater 2018;4:1700489.

123. Mimura T, Shimizu T, Sakata O, Funakubo H. Large thermal hysteresis of ferroelectric transition in HfO2-based ferroelectric films. Appl Phys Lett 2021;118:112903.

124. Schroeder U, Richter C, Park MH, et al. Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg Chem 2018;57:2752-65.

125. Zacharaki C, Tsipas P, Chaitoglou S, et al. Very large remanent polarization in ferroelectric Hf1-xZrxO2 grown on Ge substrates by plasma assisted atomic oxygen deposition. Appl Phys Lett 2019;114:112901.

126. Mueller S, Adelmann C, Singh A, Van Elshocht S, Schroeder U, Mikolajick T. Ferroelectricity in Gd-doped HfO2 thin films. ECS J Solid State Sci Technol 2012;1:N123-6.

127. Fischer D, Kersch A. Stabilization of the high-k tetragonal phase in HfO2: the influence of dopants and temperature from ab initio simulations. J Appl Phys 2008;104:084104.

128. Lee C, Cho E, Lee H, Hwang CS, Han S. First-principles study on doping and phase stability of HfO2. Phys Rev B 2008;78:012102.

129. Cheema SS, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020;580:478-82.

130. Lyu J, Fina I, Solanas R, Fontcuberta J, Sánchez F. Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films. ACS Appl Electron Mater 2019;1:220-8.

131. Song T, Bachelet R, Saint-girons G, Solanas R, Fina I, Sánchez F. Epitaxial ferroelectric la-doped Hf0.5Zr0.5O2 thin films. ACS Appl Electron Mater 2020;2:3221-32.

132. Mimura T, Shimizu T, Uchida H, Sakata O, Funakubo H. Thickness-dependent crystal structure and electric properties of epitaxial ferroelectric Y2O3-HfO2 films. Appl Phys Lett 2018;113:102901.

133. Karbasian G, dos Reis R, Yadav AK, Tan AJ, Hu C, Salahuddin S. Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2. Appl Phys Lett 2017;111:022907.

134. Lin Y, Mcguire F, Franklin AD. Realizing ferroelectric Hf0.5Zr0.5O2 with elemental capping layers. Journal of Vacuum Science & Technology 2018;36:011204.

135. Cao R, Liu Q, Liu M, et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Device Lett 2019;40:1744-7.

136. Onaya T, Nabatame T, Sawamoto N, et al. Improvement in ferroelectricity of HfxZr1-xO2 thin films using top- and bottom-ZrO2 nucleation layers. APL Materials 2019;7:061107.

137. Kim H, Kashir A, Oh S, Hwang H. A new approach to achieving strong ferroelectric properties in TiN/Hf0.5Zr0.5O2/TiN devices. Nanotechnology 2021;32:055703.

138. Wang D, Zhang Y, Wang J, et al. Enhanced ferroelectric polarization with less wake-up effect and improved endurance of Hf0.5Zr0.5O2 thin films by implementing W electrode. J Mater Sci Mater Med 2022;104:1-7.

139. Park MH, Kim HJ, Kim YJ, Moon T, Kim KD, Hwang CS. Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films. Nano Energy 2015;12:131-40.

140. Ali F, Zhou D, Ali M, et al. Recent progress on energy-related applications of HfO2-based ferroelectric and antiferroelectric materials. ACS Appl Electron Mater 2020;2:2301-17.

141. Lee TY, Lee K, Lim HH, et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS Appl Mater Interfaces 2019;11:3142-9.

142. Martin D, Müller J, Schenk T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric. Adv Mater 2014;26:8198-202.

143. Nittayakasetwat S, Kita K. Evidence of ferroelectric HfO2 phase transformation induced by electric field cycling observed at a macroscopic scale. Solid-State Electronics 2021;184:108086.

144. Gong N, Ma T. Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? IEEE Electron Device Lett 2016;37:1123-6.

145. Ma TP, Gong N. . Retention and endurance of FeFET memory cells. 2019 IEEE 11th International Memory Workshop (IMW); 2019 May 12-15; Monterey, CA, USA. IEEE; 2019. p. 1-4.

146. Nukala P, Ahmadi M, Wei Y, et al. Operando observation of reversible oxygen migration and phase transitions in ferroelectric devices. Available from: https://arxiv.org/ftp/arxiv/papers/2010/2010.10849.pdf [Last accessed on 22 Feb 2022].

147. Song T, Tan H, Dix N, et al. Stabilization of the ferroelectric phase in epitaxial Hf1-xZrxO2 enabling coexistence of ferroelectric and enhanced piezoelectric properties. ACS Appl Electron Mater 2021;3:2106-13.

148. Shimizu T, Katayama K, Funakubo H. Epitaxial growth of YO1.5 doped HfO2 films on (100) YSZ substrates with various concentrations. Ferroelectrics 2017;512:105-10.

149. Shiraishi T, Choi S, Kiguchi T, et al. Fabrication of ferroelectric Fe doped HfO2 epitaxial thin films by ion-beam sputtering method and their characterization. Jpn J Appl Phys 2018;57:11UF02.

150. Nukala P, Antoja-Lleonart J, Wei Y, Yedra L, Dkhil B, Noheda B. Direct epitaxial growth of polar (1-x)HfO2-(x)ZrO2 ultrathin films on silicon. ACS Appl Electron Mater 2019;1:2585-93.

151. Shiraishi T, Choi S, Kiguchi T, Shimizu T, Funakubo H, Konno TJ. Formation of the orthorhombic phase in CeO2-HfO2 solid solution epitaxial thin films and their ferroelectric properties. Appl Phys Lett 2019;114:232902.

152. Song T, Tan H, Bachelet R, Saint-Girons G, Fina I, Sánchez F. Impact of La concentration on ferroelectricity of La-doped HfO2 epitaxial thin films. ACS Appl Electron Mater 2021;3:4809-16.

153. Liu W, Liu M, Zhang R, Ma R, Wang H. Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films. Appl Phys Lett 2017;111:172404.

154. Li T, Zhang N, Sun Z, et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin film on a buffered YSZ substrate through interface reaction. J Mater Chem C 2018;6:9224-31.

155. Lyu J, Fina I, Solanas R, Fontcuberta J, Sánchez F. Robust ferroelectricity in epitaxial Hf1/2Zr1/2O2 thin films. Appl Phys Lett 2018;113:082902.

156. Li T, Ye M, Sun Z, et al. Origin of ferroelectricity in epitaxial Si-doped HfO2 films. ACS Appl Mater Interfaces 2019;11:4139-44.

157. Mimura T, Shimizu T, Katsuya Y, Sakata O, Funakubo H. Thickness- and orientation-dependences of Curie temperature in ferroelectric epitaxial Y doped HfO 2 films. Jpn J Appl Phys 2020;59:SGGB04.

158. Zhang Y, Yang Q, Tao L, Tsymbal EY, Alexandrov V. Effects of strain and film thickness on the stability of the rhombohedral phase of HfO2. Phys Rev Applied 2020;14:014068.

159. Song T, Bachelet R, Saint-girons G, Dix N, Fina I, Sánchez F. Thickness effect on the ferroelectric properties of La-doped HfO2 epitaxial films down to 4.5 nm. J Mater Chem C 2021;9:12224-30.

160. Song T, Solanas R, Qian M, Fina I, Sánchez F. Large enhancement of ferroelectric polarization in Hf0.5Zr0.5O2 films by low plasma energy pulsed laser deposition. J Mater Chem C 2022;10:1084-9.

161. Mimura T, Shimizu T, Kiguchi T, et al. Effects of heat treatment and in situ high-temperature X-ray diffraction study on the formation of ferroelectric epitaxial Y-doped HfO2 film. Jpn J Appl Phys 2019;58:SBBB09.

162. Katayama K, Shimizu T, Sakata O, et al. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO2-based thin films. J Appl Phys 2016;119:134101.

163. Lee K, Lee TY, Yang SM, Lee DH, Park J, Chae SC. Ferroelectricity in epitaxial Y-doped HfO2 thin film integrated on Si substrate. Appl Phys Lett 2018;112:202901.

164. Bégon-lours L, Mulder M, Nukala P, et al. Stabilization of phase-pure rhombohedral HfZrO4 in pulsed laser deposited thin films. Phys Rev Materials 2020:4.

165. Shimizu T, Mimura T, Kiguchi T, et al. Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Appl Phys Lett 2018;113:212901.

166. Walters G, Shekhawat A, Rudawski NG, Moghaddam S, Nishida T. Tiered deposition of sub-5 nm ferroelectric Hf1-xZrxO2 films on metal and semiconductor substrates. Appl Phys Lett 2018;112:192901.

167. Chernikova AG, Kozodaev MG, Negrov DV, et al. Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl Mater Interfaces 2018;10:2701-8.

168. Peng Y, Zhang G, Xiao W, et al. Ferroelectric-like non-volatile FET with amorphous gate insulator for supervised learning applications. IEEE J Electron Devices Soc 2021;9:1145-50.

169. Jia CL, Mi SB, Urban K, Vrejoiu I, Alexe M, Hesse D. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat Mater 2008;7:57-61.

170. Jia CL, Nagarajan V, He JQ, et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat Mater 2007;6:64-9.

171. Jia CL, Lentzen M, Urban K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 2003;299:870-3.

172. Jia CL, Thust A, Urban K. Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys Rev Lett 2005;95:225506.

173. Chen Z, Li F, Huang Q, et al. Giant tuning of ferroelectricity in single crystals by thickness engineering. Sci Adv 2020;6:eabc7156.

174. Nukala P, Ahmadi M, Antoja-lleonart J, et al. In situ heating studies on temperature-induced phase transitions in epitaxial Hf0.5Zr0.5O2/La0.67Sr0.33MnO3 heterostructures. Appl Phys Lett 2021;118:062901.

175. Huang Q, Chen Z, Cabral MJ, et al. Direct observation of nanoscale dynamics of ferroelectric degradation. Nat Commun 2021;12:2095.

176. Chen Z, Hong L, Wang F, et al. Kinetics of domain switching by mechanical and electrical stimulation in relaxor-based ferroelectrics. Phys Rev Applied 2017:8.

177. Chen Z, Huang Q, Wang F, Ringer SP, Luo H, Liao X. Stress-induced reversible and irreversible ferroelectric domain switching. Appl Phys Lett 2018;112:152901.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/