REFERENCES

1. Armstrong RC, Wolfram C, de Jong KP, et al. The frontiers of energy. Nat Energy 2016;1:15020.

2. Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts. Nat Energy 2019;4:430-3.

3. Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 2016;116:3594-657.

4. Xiao F, Wang YC, Wu ZP, et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv Mater 2021;33:e2006292.

5. Wu ZP, Lu XF, Zang S, Lou XW. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater 2020;30:1910274.

6. Tian X, Zhao X, Su YQ, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019;366:850-6.

7. Lei Q, Zhu H, Song K, et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J Am Chem Soc 2020;142:4213-22.

8. Wu ZP, Zhang H, Zuo S, et al. Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution. Adv Mater 2021;33:e2103004.

9. Wu ZP, Caracciolo DT, Maswadeh Y, et al. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat Commun 2021;12:859.

10. Chong L, Wen J, Kubal J, et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018;362:1276-81.

11. Kong Z, Maswadeh Y, Vargas JA, et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J Am Chem Soc 2020;142:1287-99.

12. Wu ZP, Shan S, Xie Z, et al. Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction. ACS Catal 2018;8:11302-13.

13. Huang J, Yang T, Zhao K, Chen S, Huang Q, Han Y. Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction. J Energy Chem 2021;62:71-102.

14. Shan J, Ye C, Chen S, et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J Am Chem Soc 2021;143:5201-11.

15. Wu ZP, Zhong CJ. Pd-based electrocatalysts for oxygen reduction and ethanol oxidation reactions: some recent insights into structures and mechanisms. J Electrochem 2021;27:144-56.

16. Zheng X, Zhang B, De Luna P, et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat Chem 2018;10:149-54.

17. Wu T, Sun S, Song J, et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal 2019;2:763-72.

18. Rao RR, Kolb MJ, Giordano L, et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat Catal 2020;3:516-25.

19. Wu Z, Zhang M, Jiang H, Zhong CJ, Chen Y, Wang L. Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment. Phys Chem Chem Phys 2017;19:15444-53.

20. Wu ZP, Miao B, Hopkins E, et al. Poisonous species in complete ethanol oxidation reaction on palladium catalysts. J Phys Chem C 2019;123:20853-68.

21. Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014;343:1339-43.

22. Wan G, Freeland JW, Kloppenburg J, et al. Amorphization mechanism of SrIrO3 electrocatalyst: how oxygen redox initiates ionic diffusion and structural reorganization. Sci Adv 2021;7:eabc7323.

23. Liu Z, Zhao Z, Peng B, Duan X, Huang Y. Beyond extended surfaces: understanding the oxygen reduction reaction on nanocatalysts. J Am Chem Soc 2020;142:17812-27.

24. Zhu Y, Chen H, Hsu C, et al. Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett 2019;4:987-94.

25. Zhu Y, Wang J, Chu H, Chu Y, Chen HM. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett 2020;5:1281-91.

26. Li J, Gong J. Operando characterization techniques for electrocatalysis. Energy Environ Sci 2020;13:3748-79.

27. Yang Y, Xiong Y, Zeng R, et al. Operando methods in electrocatalysis. ACS Catal 2021;11:1136-78.

28. Dong J, Zhang X, Briega-martos V, et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat Energy 2019;4:60-7.

29. Cheng W, Zhao X, Su H, et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat Energy 2019;4:115-22.

30. Zhao S, Tan C, He C, et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat Energy 2020;5:881-90.

31. Fan Z, Zhang L, Baumann D, et al. In situ transmission electron microscopy for energy materials and devices. Adv Mater 2019;31:e1900608.

32. Hwang S, Chen X, Zhou G, Su D. In situ transmission electron microscopy on energy-related catalysis. Adv Energy Mater 2020;10:1902105.

33. Li J, Johnson G, Zhang S, Su D. In situ transmission electron microscopy for energy applications. Joule 2019;3:4-8.

34. Zhang C, Firestein KL, Fernando JFS, Siriwardena D, von Treifeldt JE, Golberg D. Recent progress of in situ transmission electron microscopy for energy materials. Adv Mater 2020;32:e1904094.

35. Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its applications. R Soc Open Sci 2020;7:191204.

36. Ross FM. Opportunities and challenges in liquid cell electron microscopy. Science 2015;350:aaa9886.

37. Mayrhofer KJ, Meier JC, Ashton SJ, et al. Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 2008;10:1144-7.

38. Arenz M, Zana A. Fuel cell catalyst degradation: identical location electron microscopy and related methods. Nano Energy 2016;29:299-313.

39. Hodnik N, Dehm G, Mayrhofer KJ. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc Chem Res 2016;49:2015-22.

40. Kelly DJ, Zhou M, Clark N, et al. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett 2018;18:1168-74.

41. Park J, Koo K, Noh N, et al. Graphene liquid cell electron microscopy: progress, applications, and perspectives. ACS Nano 2021;15:288-308.

42. Hauwiller MR, Ye X, Jones MR, et al. Tracking the effects of ligands on oxidative etching of gold nanorods in graphene liquid cell electron microscopy. ACS Nano 2020;14:10239-50.

43. Wang Q, Gao Y, Ma Z, et al. Supported ionic liquid phase-boosted highly active and durable electrocatalysts towards hydrogen evolution reaction in acidic electrolyte. J Energy Chem 2021;54:342-51.

44. Velasco-Velez JJ, Mom RV, Sandoval-Diaz LE, et al. Revealing the active phase of copper during the electroreduction of CO2 in aqueous electrolyte by correlating in situ X-ray spectroscopy and in situ electron microscopy. ACS Energy Lett 2020;5:2106-11.

45. Han B, Stoerzinger KA, Tileli V, Gamalski AD, Stach EA, Shao-Horn Y. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat Mater 2017;16:121-6.

46. Hodnik N, Cherevko S. Spot the difference at the nanoscale: identical location electron microscopy in electrocatalysis. Curr Opin Electrochem 2019;15:73-82.

47. Perez-alonso FJ, Elkjær CF, Shim SS, Abrams BL, Stephens IE, Chorkendorff I. Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction. J Power Sources 2011;196:6085-91.

48. Mayrhofer KJ, Ashton SJ, Meier JC, Wiberg GK, Hanzlik M, Arenz M. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sources 2008;185:734-9.

49. Arán-Ais RM, Yu Y, Hovden R, et al. Identical location transmission electron microscopy imaging of site-selective Pt nanocatalysts: electrochemical activation and surface disordering. J Am Chem Soc 2015;137:14992-8.

50. da Silva GC, Fernandes MR, Ticianelli EA. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions. ACS Catal 2018;8:2081-92.

51. Souza NE, Bott-neto JL, Rocha TA, et al. Support modification in Pt/C electrocatalysts for durability increase: a degradation study assisted by identical location transmission electron microscopy. Electrochimica Acta 2018;265:523-31.

52. Sakthivel M, Drillet J. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl Catal B: Environ 2018;231:62-72.

53. Schonvogel D, Hülstede J, Wagner P, et al. Stability of Pt nanoparticles on alternative carbon supports for oxygen reduction reaction. J Electrochem Soc 2017;164:F995-F1004.

54. Wu ZP, Shan S, Zang SQ, Zhong CJ. Dynamic core-shell and alloy structures of multimetallic nanomaterials and their catalytic synergies. Acc Chem Res 2020;53:2913-24.

55. Yoshida T, Kojima K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Interface magazine 2015;24:45-9.

56. Hrnjic A, Kamšek AR, Pavlišič A, et al. Observing, tracking and analysing electrochemically induced atomic-scale structural changes of an individual Pt-Co nanoparticle as a fuel cell electrocatalyst by combining modified floating electrode and identical location electron microscopy. Electrochimica Acta 2021;388:138513.

57. Hrnjić A, Ruiz-zepeda F, Gaberšček M, et al. Modified floating electrode apparatus for advanced characterization of oxygen reduction reaction electrocatalysts. J Electrochem Soc 2020;167:166501.

58. Zorko M, Jozinović B, Bele M, Hodnik N, Gaberšček M. SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments. Ultramicroscopy 2014;140:44-50.

59. Cai B, Hübner R, Sasaki K, et al. Core-shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction. Angew Chem Int Ed Engl 2018;57:2963-6.

60. Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2010;2:454-60.

61. Kang Y, Snyder J, Chi M, et al. Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts. Nano Lett 2014;14:6361-7.

62. Wu ZP, Shan S, Wang S, et al. . Multimetallic catalysts and electrocatalysts: dynamic core-shell nanostructures. In: Yamashita H, Li H, editors. Core-shell and yolk-shell nanocatalysts. Singapore: Springer; 2021. p. 61-82.

63. Göhl D, Garg A, Paciok P, et al. Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells. Nat Mater 2020;19:287-91.

64. Lyu X, Jia Y, Mao X, et al. Gradient-concentration design of stable core-shell nanostructure for acidic oxygen reduction electrocatalysis. Adv Mater 2020;32:e2003493.

65. Lončar A, Escalera-López D, Ruiz-Zepeda F, et al. Sacrificial Cu layer mediated the formation of an active and stable supported iridium oxygen evolution reaction electrocatalyst. ACS Catal 2021;11:12510-9.

66. Claudel F, Dubau L, Berthomé G, et al. Degradation mechanisms of oxygen evolution reaction electrocatalysts: a combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study. ACS Catal 2019;9:4688-98.

67. Yang H, Gong L, Wang H, et al. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat Commun 2020;11:5075.

68. Roy C, Sebok B, Scott SB, et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat Catal 2018;1:820-9.

69. Shen TH, Spillane L, Vavra J, et al. Oxygen evolution reaction in Ba0.5Sr0.5Co0.8Fe0.2O3-δ aided by intrinsic Co/Fe spinel-like surface. J Am Chem Soc 2020;142:15876-83.

70. Quast T, Varhade S, Saddeler S, et al. Single particle nanoelectrochemistry reveals the catalytic oxygen evolution reaction activity of Co3O4 nanocubes. Angew Chem Int Ed Engl 2021;60:23444-50.

71. Mehdi BL, Qian J, Nasybulin E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett 2015;15:2168-73.

72. Nagashima S, Ikai T, Sasaki Y, et al. Atomic-level observation of electrochemical platinum dissolution and redeposition. Nano Lett 2019;19:7000-5.

73. Beermann V, Holtz ME, Padgett E, de Araujo JF, Muller DA, Strasser P. Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ Sci 2019;12:2476-85.

74. Holby EF, Sheng W, Shao-horn Y, Morgan D. Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ Sci 2009;2:865.

75. Zhu G, Prabhudev S, Yang J, Gabardo CM, Botton GA, Soleymani L. In situ liquid cell TEM study of morphological evolution and degradation of Pt–Fe nanocatalysts during potential cycling. J Phys Chem C 2014;118:22111-9.

76. Ortiz Peña N, Ihiawakrim D, Han M, et al. Morphological and structural evolution of Co3O4 nanoparticles revealed by in situ electrochemical transmission electron microscopy during electrocatalytic water oxidation. ACS Nano 2019;13:11372-81.

77. Zhao G, Yao Y, Lu W, et al. Direct observation of oxygen evolution and surface restructuring on Mn2O3 nanocatalysts using in situ and ex situ transmission electron microscopy. Nano Lett 2021;21:7012-20.

78. Mierwaldt D, Roddatis V, Risch M, et al. Environmental TEM investigation of electrochemical stability of perovskite and ruddlesden-popper type manganite oxygen evolution catalysts. Adv Sustainable Syst 2017;1:1700109.

79. Ronge E, Lindner J, Ross U, et al. Atom surface dynamics of manganese oxide under oxygen evolution reaction-like conditions studied by in situ environmental transmission electron microscopy. J Phys Chem C 2021;125:5037-47.

80. Zhu Y, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater 2017;16:532-6.

81. Zhang D, Zhu Y, Liu L, et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018;359:675-9.

82. Liu L, Chen Z, Wang J, et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat Chem 2019;11:622-8.

83. Verch A, Pfaff M, de Jonge N. Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir 2015;31:6956-64.

84. Chee SW, Baraissov Z, Loh ND, Matsudaira PT, Mirsaidov U. Desorption-mediated motion of nanoparticles at the liquid–solid interface. J Phys Chem C 2016;120:20462-70.

85. Yuk JM, Park J, Ercius P, et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012;336:61-4.

86. Maigné A, Wolf M. Low-dose electron energy-loss spectroscopy using electron counting direct detectors. Microscopy (Oxf) 2018;67:i86-97.

87. Zaluzec NJ, Burke MG, Haigh SJ, Kulzick MA. X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc Microanal 2014;20:323-9.

88. Ercius P, Hachtel JA, Klie RF. Chemical and bonding analysis of liquids using liquid cell electron microscopy. MRS Bull 2020;45:761-8.

89. MacArthur KE, Slater TJ, Haigh SJ, Ozkaya D, Nellist PD, Lozano-Perez S. Quantitative energy-dispersive X-Ray analysis of catalyst nanoparticles using a partial cross section approach. Microsc Microanal 2016;22:71-81.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/