REFERENCES

1. Correa-Baena JP, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science 2017;358:739-44.

2. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 2009;131:6050-1.

3. Green MA, Dunlop ED, Hohl-ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 59). Prog Photovolt Res Appl 2022;30:3-12.

4. NREL best research efficiency cell chart. Available from: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf. [Last accessed on 6 Jun 2022].

5. Azmi R, Ugur E, Seitkhan A, et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 2022;376:73-7.

6. Dou J, Zhu C, Wang H, et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv Mater 2021;33:e2102947.

7. Wu S, Li Z, Li MQ, et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat Nanotechnol 2020;15:934-40.

8. Hou J, Chen P, Shukla A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 2021;374:621-5.

9. Yadav SK, Grandhi GK, Dubal DP, et al. Metal halide perovskite@metal-organic framework hybrids: synthesis, design, properties, and applications. Small 2020;16:e2004891.

10. Boström HLB, Goodwin AL. Hybrid perovskites, metal-organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks. Acc Chem Res 2021;54:1288-97.

11. Zhang C, Li W, Li L. Metal halide perovskite nanocrystals in metal-organic framework host: not merely enhanced stability. Angew Chem Int Ed Engl 2021;60:7488-501.

12. In: Pourshaban E, Golobostanfard MR, Metal-organic framework-based nanomaterials for energy conversion and storage, In: Gupta R, Nguyen T, Yasin G, editors. Chapter 23-recent development in MOFs for perovskite-based solar cells. Elsevier; 2022. pp. 507-34.

13. Liang X, Zhou X, Ge C, et al. Advance and prospect of metal-organic frameworks for perovskite photovoltaic devices. Org Electron 2022;106:106546.

14. Shen M, Zhang Y, Xu H, Ma H. MOFs based on the application and challenges of perovskite solar cells. iScience 2021;24:103069.

15. Chueh C, Chen C, Su Y, et al. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J Mater Chem A 2019;7:17079-95.

16. Hou J, Wang Z, Chen P, Chen V, Cheetham AK, Wang L. Intermarriage of halide perovskites and metal-organic framework crystals. Angew Chem Int Ed Engl 2020;59:19434-49.

17. Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc 1990;112:1546-54.

18. Hoskins BF, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 1989;111:5962-5964.

19. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 2012;112:933-69.

20. Yaghi OM, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc 1995;117:10401-10402.

21. Hendon CH, Rieth AJ, Korzyński MD, Dincă M. Grand Challenges and Future Opportunities for Metal-Organic Frameworks. ACS Cent Sci 2017;3:554-63.

22. Li H, Eddaoudi M, O’keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402:276-9.

23. Chui SS, Lo SM, Charmant JP, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999;283:1148-50.

24. Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008;319:939-43.

25. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006;103:10186-91.

26. Dybtsev DN, Chun H, Kim K. Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed Engl 2004;43:5033-6.

27. Zhou C, Longley L, Krajnc A, et al. Metal-organic framework glasses with permanent accessible porosity. Nat Commun 2018;9:5042.

28. Longley L, Calahoo C, Limbach R, et al. Metal-organic framework and inorganic glass composites. Nat Commun 2020;11:5800.

29. Gaillac R, Pullumbi P, Beyer KA, et al. Liquid metal-organic frameworks. Nat Mater 2017;16:1149-54.

30. Hou J, Ashling CW, Collins SM, Krajnc A, Zhou C, et al. Metal-organic framework crystal-glass composites. Nat Commun 2019;10:2580.

31. Hou J, Ríos Gómez ML, Krajnc A, et al. Halogenated metal-organic framework glasses and liquids. J Am Chem Soc 2020;142:3880-90.

32. Deng H, Doonan CJ, Furukawa H, et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010;327:846-50.

33. Chen P, Bai Y, Lyu M, Yun J, Hao M, Wang L. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Sol RRL 2018;2:1700186.

34. Jena AK, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev 2019;119:3036-103.

35. Chen P, Bai Y, Wang L. Minimizing voltage losses in perovskite solar cells. Small Struct 2021;2:2000050.

36. Shen D, Pang A, Li Y, Dou J, Wei M. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties. Chem Commun (Camb) 2018;54:1253-6.

37. Ahmadian-yazdi M, Gholampour N, Eslamian M. Interface engineering by employing zeolitic imidazolate framework-8 (ZIF-8) as the only scaffold in the architecture of perovskite solar cells. ACS Appl Energy Mater 2020;3:3134-43.

38. Zhang Y, Li B, Fu L, Li Q, Yin L. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells. Electrochim Acta 2020;330:135280.

39. Ryu U, Jee S, Park JS, et al. Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 2018;12:4968-75.

40. Huang L, Zhou X, Wu R, et al. Oriented haloing metal-organic framework providing high efficiency and high moisture-resistance for perovskite solar cells. J Power Sources 2019;433:226699.

41. Li M, Xia D, Yang Y, et al. Doping of [In2(phen)3Cl6]•CH3CN2H2O Indium-based metal-organic framework into hole transport layer for enhancing perovskite solar cell efficiencies. Adv Energy Mater 2018;8:1702052.

42. Zhang J, Guo S, Zhu M, et al. Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials. Chem Eng J 2021;408:127328.

43. Dong Y, Zhang J, Yang Y, et al. Self-assembly of hybrid oxidant POM@Cu-BTC for enhanced efficiency and long-term stability of perovskite solar cells. Angew Chem Int Ed Engl 2019;58:17610-5.

44. Chang TH, Kung CW, Chen HW, et al. Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals. Adv Mater 2015;27:7229-35.

45. Lee CC, Chen CI, Liao YT, Wu KC, Chueh CC. Enhancing efficiency and stability of photovoltaic cells by using perovskite/zr-mof heterojunction including bilayer and hybrid structures. Adv Sci (Weinh) 2019;6:1801715.

46. Zhou X, Qiu L, Fan R, Zhang J, Hao S, Yang Y. Heterojunction incorporating perovskite and microporous metal-organic framework nanocrystals for efficient and stable solar cells. Nanomicro Lett 2020;12:80.

47. Li M, Xia D, Jiang A, et al. Enhanced crystallization and optimized morphology of perovskites through doping an indium-based metal-organic assembly: achieving significant solar cell efficiency enhancements. Energy Technol 2019;7:1900027.

48. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012;338:643-7.

49. Crossland EJ, Noel N, Sivaram V, Leijtens T, Alexander-Webber JA, Snaith HJ. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013;495:215-9.

50. Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun 2013;4:2885.

51. Chen P, Wang Z, Wang S, et al. Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. Nano Energy 2020;69:104392.

52. Xie LS, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks. Chem Rev 2020;120:8536-80.

53. Yang WS, Noh JH, Jeon NJ, et al. SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015;348:1234-7.

54. Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J Am Chem Soc 2015;137:8696-9.

55. Zhao J, Deng Y, Wei H, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv 2017;3:eaao5616.

56. Steele JA, Jin H, Dovgaliuk I, et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 2019;365:679-84.

57. Kim G, Min H, Lee KS, Lee DY, Yoon SM, Seok SI. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020;370:108-12.

58. Yuan Y, Huang J. Ion Migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res 2016;49:286-93.

59. Yun JS, Seidel J, Kim J, et al. Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv Energy Mater 2016;6:1600330.

60. Zhang C, Wang B, Li W, et al. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat Commun 2017;8:1138.

61. Sun L, Hendon CH, Minier MA, Walsh A, Dincă M. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J Am Chem Soc 2015;137:6164-7.

62. Xie LS, Sun L, Wan R, et al. Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal-organic framework. J Am Chem Soc 2018;140:7411-4.

63. Dong R, Han P, Arora H, et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat Mater 2018;17:1027-32.

64. Huang X, Sheng P, Tu Z, et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat Commun 2015;6:7408.

65. Nguyen Tle A, Demir-Cakan R, Devic T, et al. 3-D coordination polymers based on the tetrathiafulvalenetetracarboxylate (TTF-TC) derivative: synthesis, characterization, and oxidation issues. Inorg Chem 2010;49:7135-43.

66. Park SS, Hontz ER, Sun L, et al. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J Am Chem Soc 2015;137:1774-7.

67. Bi C, Kershaw SV, Rogach AL, Tian J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv Funct Mater 2019;29:1902446.

68. Shi J, Li F, Jin Y, et al. In Situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew Chem Int Ed Engl 2020;59:22230-7.

69. Bai Y, Hao M, Ding S, Chen P, Wang L. Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives. Adv Mater 2022;34:e2105958.

70. Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic structure modeling of metal-organic frameworks. Chem Rev 2020;120:8641-715.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/