1. Kittner N, Lill F, Kammen DM. Energy storage deployment and innovation for the clean energy transition. Nat Energy 2017;2:1-6.
2. Oudenhoven JFM, Baggetto L, Notten PHL. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv Energy Mater 2011;1:10-33.
3. Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol 2017;12:7-15.
4. Hong X, Ma X, He L, et al. Regulating lattice-water-adsorbed ions to optimize intercalation potential in 3D prussian blue based multi-ion microbattery. Small 2021;17:e2007791.
5. Pan X, Hong X, Xu L, Li Y, Yan M, Mai L. On-chip micro/nano devices for energy conversion and storage. Nano Today 2019;28:100764.
6. Mckelvey K, Brunet Cabré M, Esmeraldo Paiva A. Continuum simulations for microscale 3D batteries. Curr Opin Electrochem 2020;21:76-83.
7. Yue C, Li J, Lin L. Fabrication of Si-based three-dimensional microbatteries: a review. Front Mech Eng 2017;12:459-76.
8. Yang Y, Yuan W, Zhang X, et al. Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries. Appl Energy 2020;257:114002.
9. Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 2012;73:51-65.
10. Zhang X, Chen Y, Ma F, et al. Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chem Eng J 2022;436:134945.
11. Zhang X, Chen Y, Srinivas K, et al. Lithiophilic Mo3N2/MoN as multifunctional interlayer for dendrite-free and ultra-stable lithium metal batteries. J Colloid Interface Sci 2022;612:332-41.
12. Shi Y, Fu J, Hui K, et al. Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries. Microstructures 2021;1:2021005.
13. Park S, Jin HJ, Yun YS. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv Mater 2020;32:e2002193.
14. Zhu Z, Kan R, Hu S, et al. Recent advances in high-performance microbatteries: construction, application, and perspective. Small 2020;16:e2003251.
15. Zoller F, Böhm D, Bein T, Fattakhova-Rohlfing D. Tin oxide based nanomaterials and their application as anodes in lithium-ion batteries and beyond. ChemSusChem 2019;12:4140-59.
16. Fang X, Peng H. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small 2015;11:1488-511.
17. Pei P, Wang K, Ma Z. Technologies for extending zinc-air battery’s cyclelife: A review. Appl Energy 2014;128:315-24.
18. Yang H, Li H, Li J, et al. The rechargeable aluminum battery: opportunities and challenges. Angew Chem Int Ed Engl 2019;58:11978-96.
19. Sharifi T, Valvo M, Gracia-espino E, Sandström R, Edström K, Wågberg T. Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries. J Power Sources 2015;279:581-92.
20. Tang H, Karnaushenko DD, Neu V, et al. Stress-actuated spiral microelectrode for high-performance lithium-ion microbatteries. Small 2020;16:e2002410.
21. Zhang M, Mei H, Chang P, Cheng L. 3D printing of structured electrodes for rechargeable batteries. J Mater Chem A 2020;8:10670-94.
22. Liu N, Gao Y. Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small 2017;13:1701989.
23. Duan Y, You G, Sun K, et al. Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Adv 2021;3:6271-93.
24. Wu Z, Parvez K, Feng X, Müllen K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J Mater Chem A 2014;2:8288.
25. Choi CS, Lau J, Hur J, Smith L, Wang C, Dunn B. Synthesis and properties of a photopatternable lithium-ion conducting solid electrolyte. Adv Mater 2018;30:1703772.
26. Hur JI, Smith LC, Dunn B. High areal energy density 3D lithium-ion microbatteries. Joule 2018;2:1187-201.
27. Mamidi S, Kakunuri M, Sharma CS. Fabrication of SU-8 derived three-dimensional carbon microelectrodes as high capacity anodes for lithium-ion batteries. ECS Trans 2018;85:21-7.
28. Lai W, Wang Y, Lei Z, et al. High performance, environmentally benign and integratable Zn//MnO2 microbatteries. J Mater Chem A 2018;6:3933-40.
29. Wang Y, Hong X, Guo Y, et al. Wearable Textile-Based Co-Zn alkaline microbattery with high energy density and excellent reliability. Small 2020;16:e2000293.
30. Lobo DE, Banerjee PC, Easton CD, Majumder M. Miniaturized supercapacitors: focused ion beam reduced graphene oxide supercapacitors with enhanced performance metrics. Adv Energy Mater 2015;5:1500665.
31. Pikul JH, Gang Zhang H, Cho J, Braun PV, King WP. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 2013;4:1732.
32. Lee K, Ahn DB, Kim J, Lee J, Lee S. Printed built-in power sources. Matter 2020;2:345-59.
33. Costa C, Gonçalves R, Lanceros-méndez S. Recent advances and future challenges in printed batteries. Energy Storage Mater 2020;28:216-34.
34. Zhang Y, Zhu Y, Zheng S, et al. Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. J Energy Chem 2021;63:498-513.
35. Kumar R, Shin J, Yin L, You J, Meng YS, Wang J. All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv Energy Mater 2017;7:1602096.
36. Hong SY, Jee SM, Ko Y, et al. Intrinsically stretchable and printable lithium-ion battery for free-form configuration. ACS Nano 2022;16:2271-81.
37. Nayak L, Mohanty S, Nayak SK, Ramadoss A. A review on inkjet printing of nanoparticle inks for flexible electronics. J Mater Chem C 2019;7:8771-95.
38. Choi K, Ahn DB, Lee S. Current status and challenges in printed batteries: toward form factor-free, monolithic integrated power sources. ACS Energy Lett 2018;3:220-36.
39. Milroy CA, Jang S, Fujimori T, Dodabalapur A, Manthiram A. Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing. Small 2017;13:1603786.
40. Lawes S, Sun Q, Lushington A, Xiao B, Liu Y, Sun X. Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energy 2017;36:313-21.
41. Gu Y, Wu A, Sohn H, Nicoletti C, Iqbal Z, Federici JF. Fabrication of rechargeable lithium ion batteries using water-based inkjet printed cathodes. J Manuf Process 2015;20:198-205.
42. Ejeian M, Wang R. Adsorption-based atmospheric water harvesting. Joule 2021;5:1678-703.
43. Cohen E, Menkin S, Lifshits M, et al. Novel rechargeable 3D-Microbatteries on 3D-printed-polymer substrates: Feasibility study. Electrochim Acta 2018;265:690-701.
44. Kim C, Ahn BY, Wei TS, et al. High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano 2018;12:11838-46.
45. Yu Y, Chen M, Wang S, et al. Laser sintering of printed anodes for al-air batteries. J Electrochem Soc 2018;165:A584-92.
46. Lacey SD, Kirsch DJ, Li Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv Mater 2018;30:e1705651.
47. Hu J, Jiang Y, Cui S, et al. 3D-Printed cathodes of LiMn1-xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv Energy Mater 2016;6:1600856.
48. Ding J, Shen K, Du Z, Li B, Yang S. 3D-Printed hierarchical porous frameworks for sodium storage. ACS Appl Mater Interfaces 2017;9:41871-7.
49. Cai J, Fan Z, Jin J, et al. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity. Nano Energy 2020;75:104970.
50. Park JU, Hardy M, Kang SJ, et al. High-resolution electrohydrodynamic jet printing. Nat Mater 2007;6:782-9.
51. Ning H, Pikul JH, Zhang R, et al. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc Natl Acad Sci USA 2015;112:6573-8.
52. Zhuang P, Sun Y, Li L, et al. FIB-patterned nano-supercapacitors: minimized size with ultrahigh performances. Adv Mater 2020;32:e1908072.
53. Kanehori K, Matsumoto K, Miyauchi K, Kudo T. Thin film solid electrolyte and its application to secondary lithium cell. Solid State Ionics 1983;9-10:1445-8.
54. Nakano H, Dokko K, Sugaya J, Yasukawa T, Matsue T, Kanamura K. All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure. Electrochem Commun 2007;9:2013-7.
55. Koo M, Park KI, Lee SH, et al. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett 2012;12:4810-6.
56. Oukassi S, Bazin A, Secouard C, et al. Millimeter scale thin film batteries for integrated high energy density storage. In 2019 IEEE International Electron Devices Meeting (IEDM); 2019, p.26.1.1-26.1.4. (ISBN No. 2156-017X)
57. Sha M, Zhao H, Lei Y. Updated insights into 3D architecture electrodes for micropower sources. Adv Mater 2021;33:e2103304.
58. Wang J, Shen Z. Modeling-guided understanding microstructure effects in energy storage dielectrics. Microstructures 2021;1:2021006.
59. Baggetto L, Niessen RAH, Roozeboom F, Notten PHL. High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv Funct Mater 2008;18:1057-66.
60. Lyu Z, Lim GJ, Koh JJ, et al. Design and manufacture of 3D-printed batteries. Joule 2021;5:89-114.
61. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 2013;25:4539-43.
62. Xu Z, Liu X, Luo Y, Zhou L, Kim J. Nanosilicon anodes for high performance rechargeable batteries. Prog Mater Sci 2017;90:1-44.
63. Yue C, Zhang S, Yu Y, et al. Laser-patterned Si/TiN/Ge anode for stable Si based Li-ion microbatteries. J Power Sources 2021;493:229697.
64. Zhao X, Kalidas N, Lehto V. Self-standing mesoporous Si films as anodes for lithium-ion microbatteries. J Power Sources 2022;529:231269.
65. Yue C, Wu M, Cheng B, et al. Fabrication of multilayer Si/TiN/Sb NR arrays as anode for 3D Si-based lithium/sodium ion microbatteries. Adv Mater Interfaces 2020;7:2001043.
66. Sternad M, Hirtler G, Sorger M, et al. A Lithium-silicon microbattery with anode and housing directly made from semiconductor grade monocrystalline Si. Adv Mater Technol 2022;7:2100405.
67. Lyu Z, Lim GJ, Guo R, et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater 2020;24:336-42.
68. Cao D, Xing Y, Tantratian K, et al. 3D Printed High-performance lithium metal microbatteries enabled by nanocellulose. Adv Mater 2019;31:e1807313.
69. Shen K, Li B, Yang S. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater 2020;24:670-5.
70. Sun P, Li X, Shao J, Braun PV. High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv Mater 2021;33:e2006229.
71. Dudney N. Solid-state thin-film rechargeable batteries. Mater Sci Eng B 2005;116:245-9.
72. Cao T, Shi X, Zou J, Chen Z. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures 2021;1:2021007.
73. Werner JG, Rodríguez-calero GG, Abruña HD, Wiesner U. Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy Environ Sci 2018;11:1261-70.
74. Ergang NS, Fierke MA, Wang Z, Smyrl WH, Stein A. Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell. J Electrochem Soc 2007;154:A1135.
75. Li Y, Zhu M, Bandari VK, et al. On-Chip batteries for dust-sized computers. Adv Energy Mater 2022;12:2270051.
76. Cha H, Lee Y, Kim J, Park M, Cho J. Flexible 3D interlocking lithium-ion batteries. Adv Energy Mater 2018;8:1801917.
77. Liu W, Chen Z, Zhou G, et al. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv Mater 2016;28:3578-83.
78. Li H, Ding Y, Ha H, et al. An all-stretchable-component sodium-ion full battery. Adv Mater 2017;29:1700898.
79. Kang S, Hong SY, Kim N, et al. Stretchable lithium-ion battery based on re-entrant micro-honeycomb electrodes and cross-linked gel electrolyte. ACS Nano 2020;14:3660-8.
80. Liu W, Chen J, Chen Z, et al. Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator. Adv Energy Mater 2017;7:1701076.
81. Song Z, Wang X, Lv C, et al. Kirigami-based stretchable lithium-ion batteries. Sci Rep 2015;5:10988.
82. Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 2013;4:1543.
83. Nasreldin M, Delattre R, Calmes C, et al. High performance stretchable Li-ion microbattery. Energy Storage Mater 2020;33:108-15.
84. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Towards K-Ion and Na-Ion batteries as “Beyond Li-Ion”. Chem Rec 2018;18:459-79.
85. Ni J, Dai A, Yuan Y, Li L, Lu J. Three-Dimensional microbatteries beyond lithium ion. Matter 2020;2:1366-76.
86. Shi F, Chen C, Xu Z. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Adv Fiber Mater 2021;3:275-301.
87. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.
88. Park J, Xu ZL, Kang K. Solvated ion intercalation in graphite: sodium and beyond. Front Chem 2020;8:432.
89. Xu Z, Park J, Yoon G, Kim H, Kang K. Graphitic carbon materials for advanced sodium-ion batteries. Small Methods 2019;3:1800227.
90. Kuratani K, Uemura N, Senoh H, Takeshita H, Kiyobayashi T. Conductivity, viscosity and density of MClO4 (M = Li and Na) dissolved in propylene carbonate and γ-butyrolactone at high concentrations. J Power Sources 2013;223:175-82.
91. Zheng S, Huang H, Dong Y, et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ Sci 2020;13:821-9.
92. Muldoon J, Bucur CB, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 2014;114:11683-720.
93. Chen C, Shi F, Zhang S, Su Y, Xu ZL. Ultrastable and high energy calcium rechargeable batteries enabled by calcium intercalation in a NASICON cathode. Small 2022;18:e2107853.
94. Chen C, Shi F, Xu Z. Advanced electrode materials for nonaqueous calcium rechargeable batteries. J Mater Chem A 2021;9:11908-30.
95. Hao Z, Xu L, Liu Q, et al. On-Chip Ni-Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 Microelectrode with ultrafast ion and electron transport kinetics. Adv Funct Mater 2019;29:1808470.
96. Bi S, Wan F, Wang S, Jia S, Tian J, Niu Z. Flexible and tailorable quasi-solid-state rechargeable Ag/Zn microbatteries with high performance. Carbon Energy 2021;3:167-75.
97. Zhao J, Sonigara KK, Li J, et al. A Smart flexible zinc battery with cooling recovery ability. Angew Chem Int Ed Engl 2017;56:7871-5.
98. Jin X, Song L, Dai C, et al. A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv Mater 2022;34:e2109450.
99. Wang S, Jiao S, Song W, et al. A novel dual-graphite aluminum-ion battery. Energy Storage Mater 2018;12:119-27.
100. Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv Funct Mater 2011;21:3859-67.
101. Parker JF, Chervin CN, Pala IR, et al. Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 2017;356:415-8.
103. Cheong WH, Oh B, Kim S, et al. Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy 2019;62:230-8.
104. Park J, Ahn DB, Kim J, et al. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci Adv 2019;5:eaay0764.
105. An HS, Park YG, Kim K, Nam YS, Song MH, Park JU. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv Sci (Weinh) 2019;6:1901603.
106. Zhu M, Schmidt OG. Tiny robots and sensors need tiny batteries - here’s how to do it. Nature 2021;589:195-7.
107. Um H, Choi K, Hwang I, Kim S, Seo K, Lee S. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ Sci 2017;10:931-40.
108. Hu B, Wang X. Advances in micro lithium-ion batteries for on-chip and wearable applications. J Micromech Microeng 2021;31:114002.
109. Ren J, Li L, Chen C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 2013;25:1155-9, 1224.
110. Wang Y, Chen C, Xie H, et al. 3D-Printed All-Fiber Li-Ion Battery toward Wearable Energy Storage. Adv Funct Mater 2017;27:1703140.
111. Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010;4:5843-8.
112. Zheng S, Wu Z, Zhou F, et al. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018;51:613-20.
113. Nasreldin M, Mulatier S, Delattre R, Ramuz M, Djenizian T. Flexible and stretchable microbatteries for wearable technologies. Adv Mater Technol 2020;5:2000412.
114. Wang Z, Mo F, Ma L, et al. Highly Compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system. ACS Appl Mater Interfaces 2018;10:44527-34.
115. Liu N, Zhou G, Yang A, et al. Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. Proc Natl Acad Sci USA 2019;116:765-70.
116. Zhou B, He D, Hu J, et al. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J Mater Chem A 2018;6:11725-33.
117. Yang Y, Wang S, Zhang Y, Wang ZL. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett 2012;12:6408-13.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.