REFERENCES

1. Zhao P, Cai Z, Wu L, et al. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J Adv Ceram 2021;10:1153-93.

2. Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121:6124-72.

3. Palneedi H, Peddigari M, Hwang G-T, Jeong D-Y, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018;28:1803665.

4. Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015;523:576-9.

5. Whittingham MS. Materials challenges facing electrical energy storage. MRS Bull 2008;33:411-9.

6. Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020;19:999-1005.

7. Xu R, Feng Y, Wei X, Xu Z. Analysis on nonlinearity of antiferroelectric multilayer ceramic capacitor (MLCC) for energy storage. IEEE Trans Dielect Electr Insul 2019;26:2005-11.

8. Love GR. Energy storage in ceramic dielectrics. J Am Ceram Soc 1990;73:323-8.

9. Jow TR, MacDougall FW, Ennis JB, et al. Pulsed power capacitor development and outlook. In 2015 IEEE Pulsed Power Conference (PPC); 2015, pp. 1-7.

10. Wang Y, Zhou X, Chen Q, Chu BJ, Zhang QM. Recent development of high energy density polymers for dielectric capacitors. IEEE Trans Dielect Electr Insul 2010;17:1036-42.

11. Kim J, Saremi S, Acharya M, et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020;369:81-4.

12. Liu Z, Lu T, Ye J, et al. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3:1800111.

13. Hong K, Lee TH, Suh JM, Yoon S-H, Jang HW. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J Mater Chem C 2019;7:9782-802.

14. Li F, Zhai J, Shen B, Zeng H. Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J Adv Dielect 2019;8:1830005.

15. Zhang H, Wei T, Zhang Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C 2020;8:16648-67.

16. Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017;29:1601727.

17. Ogihara H, Randall CA, Trolier-McKinstry S. High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. J Am Ceram Soc 2009;92:1719-24.

18. Wang Z, Kang R, Liu W, et al. (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with medium permittivity featuring enhanced energy-storage density and excellent thermal stability. Chem Eng J 2022:427.

19. Yang L, Kong X, Cheng Z, Zhang S. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J Mater Chem A 2019;7:8573-80.

20. Yang L, Kong X, Cheng Z, Zhang S. Enhanced energy density and electric cycling reliability via MnO2 modification in sodium niobate-based relaxor dielectric capacitors. J Mater Res ;2021, 36:1214-1222.

21. Wang X, Huan Y, Zhao P, et al. Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: Paving the way for ultrahigh energy storage capacitors. J Mater 2021;7:780-9.

22. Zhao P, Wang H, Wu L, et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater 2019;9:1803048.

23. Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578-82.

24. Yuan Q, Li G, Yao F-Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.

25. Wu L, Wang X, Li L. Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv 2016;6:14273-82.

26. Zhou M, Liang R, Zhou Z, Dong X. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J Mater Chem A 2018;6:17896-904.

27. Zhao P, Cai Z, Chen L, et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy Environ Sci 2020;13:4882-90.

28. Zhao P, Chen L, Li L, Wang X. Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via composite strategy design. J Mater Chem A 2021;9:25914-21.

29. Chen L, Wang H, Zhao P, et al. Effect of MnO2 on the dielectric properties of Nb-doped BaTiO3-(Bi0.5Na0.5)TiO3 ceramics for X9R MLCC applications. J Am Ceram Soc 2018;102:2781-90.

30. Hui K, Chen L, Cen Z, et al. KNN based high dielectric constant X9R ceramics with fine grain structure and energy storage ability. J Am Ceram Soc 2021;104:5815-25.

31. Li T, Qiao Z, Zuo R. X9R-type Ag1-3xBixNbO3 based lead-free dielectric ceramic capacitors with excellent energy-storage properties. Ceram Int 2022;48:2533-7.

32. Zhu C, Cai Z, Luo B, et al. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J Mater Chem A 2020;8:683-92.

33. Yang Z, Du H, Jin L, et al. Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range. J Mater Chem A 2019;7:27256-66.

34. Cai Z, Zhu C, Wang H, et al. High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering. J Mater Chem A 2019;7:14575-82.

35. Chen I-W, XH W. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000;404:168.

36. Wang XH, Deng X-Y, Bai H-L, et al. Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-Cu-Zn ferrite. J Am Ceram Soc 2006;89:438-43.

37. Shen Z, Wang X, Luo B, Li L. BaTiO3-BiYbO3 perovskite materials for energy storage applications. J Mater Chem A 2015;3:18146-53.

38. Zhu C, Cai Z, Guo L, et al. Simultaneously achieved ultrastable dielectric and energy storage properties in lead-free Bi0.5Na0.5TiO3-based ceramics. ACS Appl Energy Mater 2022;5:1560-70.

39. Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.

40. Hao X. A review on the dielectric materials for high energy-storage application. J Adv Dielectr 2013;03:1330001.

41. Li J, Li F, Xu Z, Zhang S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 2018;30:1802155.

42. Yang D, Gao J, Shu L, et al. Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J Mater Chem A 2020;8:23724-37.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/