REFERENCES
1. Hao X, Zhai J, Kong LB, Xu Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci 2014;63:1-57.
2. Qi H, Xie A, Zuo R. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review. Energy Stor Mater 2022;45:541-67.
3. Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.
4. Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121:6124-72.
5. Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020;19:999-1005.
6. Yang Z, Du H, Jin L, Poelman D. High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J Mater Chem A 2021;9:18026-85.
7. Yao FZ, Yuan Q, Wang Q, Wang H. Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films. Nanoscale 2020;12:17165-84.
8. Veerapandiyan V, Benes F, Gindel T, Deluca M. Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review. Materials 2020;13:5742.
9. Guo X, Pu Y, Wang W, et al. Ultrahigh energy storage performance and fast charge-discharge capability in Dy- modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering. Ceram Int 2020;46:21719-27.
10. Xie A, Qi H, Zuo R, Tian A, Chen J, Zhang S. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. J Mater Chem C 2019;7:15153-61.
11. Dong X, Li X, Chen X, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J Materiomics 2021;7:629-39.
12. Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J Mater Chem A 2020;8:8352-9.
13. Bokov AA, Ye Z. Dielectric relaxation in relaxor ferroelectrics. J Adv Dielectr 2012;2:1241010.
14. Cross LE. Relaxor ferroelectrics. Ferroelectrics 1987;76:241-67.
15. Pan H, Lan S, Xu S, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021;374:100-104.
16. Chen L, Wang N, Zhang Z, et al. Local diverse polarization optimized comprehensive energy-storage performance in lead-free superparaelectrics. Adv Mater 2022;34:e2205787.
17. Yang W, Zeng H, Yan F, et al. Superior energy storage properties in NaNbO3-based ceramics via synergistically optimizing domain and band structures. J Mater Chem A 2022;10:11613-24.
18. Qi H, Zuo R. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J Mater Chem A 2019;7:3971-8.
19. Ye H, Yang F, Pan Z, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater 2021;203:116484.
20. Kang R, Wang Z, Lou X, et al. Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields. Chem Eng J 2021;410:128376.
21. Glazer AM, Megaw HD. Studies of the lattice parameters and domains in the phase transitions of NaNbO3. Acta Crystallogr A 1973;29:489-95.
22. Megaw HD. The seven phases of sodium niobate. Ferroelectrics 1974;7:87-9.
23. Megaw HD, Wells M. The space group of NaNbO3 and (Na0.995K0.005)NbO3. Acta Crystallogr 1958;11:858-62.
24. Guo H, Shimizu H, Mizuno Y, Randall CA. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution. J Appl Phys 2015;117:214103.
25. Qi H, Zuo R, Xie A, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater 2019;29:1903877.
26. Guo H, Shimizu H, Randall CA. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl Phys Lett 2015;107:112904.
27. Reznichenko LA, Shilkina LA, Gagarina ES, et al. Structural instabilities, incommensurate modulations and P and Q phases in sodium niobate in the temperature range 300-500 K. Crystallogr Rep 2003;48:448-56.
28. Wang X, Shen Z, Hu Z, Qin L, Tang S, Kuok M. High temperature Raman study of phase transitions in antiferroelectric NaNbO3. J Mol Struct 1996;385:1-6.
29. Bokov AA, Ye Z. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41:31-52.
30. Hu Q, Tian Y, Zhu Q, et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 2020;67:104264.
31. Yan F, Zhou X, He X, et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 2020;75:105012.
32. Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr A 1975;31:756-62.
33. Guo H, Shimizu H, Randall CA. Microstructural evolution in NaNbO3-based antiferroelectrics. J Appl Phys 2015;118:174107.
34. Liu Z, Lu J, Mao Y, Ren P, Fan H. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J Eur Ceram Soc 2018;38:4939-45.
35. Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans 2015;44:10763-72.
36. Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett 1996;15:1767-9.
37. Luo N, Han K, Cabral MJ, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat Commun 2020;11:4824.
38. Chao W, Gao J, Yang T, Li Y. Excellent energy storage performance in La and Ta co-doped AgNbO3 antiferroelectric ceramics. J Eur Ceram Soc 2021;41:7670-7.
39. Chen J, Qi H, Zuo R. Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na1-x/2Lax/2)(Nb1-xTix)O3 Lead-Free Ceramics through A/B-Site Complex Substitution. ACS Appl Mater Interfaces 2020;12:32871-9.
40. Lu Z, Bao W, Wang G, et al. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy 2021;79:105423.
41. Li S, Hu T, Nie H, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Stor Mater 2021;34:417-26.
42. Guo B, Yan Y, Tang M, et al. Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chem Eng J 2021;420:130475.
43. Chen H, Shi J, Dong X, et al. Enhanced thermal and frequency stability and decent fatigue endurance in lead-free NaNbO3-based ceramics with high energy storage density and efficiency. J Materiomics 2022;8:489-97.
44. Pang F, Chen X, Sun C, et al. Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field. ACS Sustain Chem Eng 2020;8:14985-95.
45. Zhu C, Cai Z, Luo B, et al. Multiphase engineered BNT-based ceramics with simultaneous high polarization and superior breakdown strength for energy storage applications. ACS Appl Mater Interfaces 2021;13:28484-92.
46. Yan F, Huang K, Jiang T, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Stor Mater 2020;30:392-400.