REFERENCES
1. Arneth A, Sitch S, Pongratz J, et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat Geosci 2017;10:79-84.
2. Liu LX, Fu J, Jiang LP, Zhang JR, Zhu W, Lin Y. Highly efficient photoelectrochemical reduction of CO2 at low applied voltage using 3D Co-Pi/BiVO4/SnO2 nanosheet array photoanodes. ACS Appl Mater Interfaces 2019;11:26024-31.
3. Yuan Y, Lu J. Demanding energy from carbon. Carbon Energy 2019;1:8-12.
4. Liu J, Fu J, Zhou Y, Zhu W, Jiang LP, Lin Y. Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products. Nano Lett 2020;20:4823-8.
5. Liu J, Cai Y, Song R, et al. Recent progress on single-atom catalysts for CO2 electroreduction. Mater Today 2021;48:95-114.
6. Salemdeeb R, Saint R, Clark W, Lenaghan M, Pratt K, Millar F. A pragmatic and industry-oriented framework for data quality assessment of environmental footprint tools. Resour Environ Sustain 2021;3:100019.
7. Dou X, Wang Y, Ciais P, et al. Near-real-time global gridded daily CO2 emissions. Innovation 2022;3:100182.
8. Du H, Liu LX, Li P, et al. Enriching reaction intermediates in multishell structured copper catalysts for boosted propanol electrosynthesis from carbon monoxide. ACS Nano 2023;17:8663-70.
9. Zhao Q, Yu P, Mahendran R, et al. Global climate change and human health: pathways and possible solutions. Eco-Environ Health 2022;1:53-62.
10. Fu J, Li P, Lin Y, et al. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ Health 2022;1:259-79.
11. Li K, Cai Y, Yang X, et al. H2S Involved photocatalytic system: a novel syngas production strategy by boosting the photoreduction of CO2 while recovering hydrogen from the environmental toxicant. Adv Funct Mater 2022;32:2113002.
12. Yang X, Li K, Wang G, et al. 2D Catalysts for CO2 photoreduction: discussing structure efficiency strategies and prospects for scaled production based on current progress. Chemistry 2022;28:e202201881.
13. Ran J, Jaroniec M, Qiao SZ. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater 2018;30:1704649.
14. Fu J, Jiang K, Qiu X, Yu J, Liu M. Product selectivity of photocatalytic CO2 reduction reactions. Mater Today 2020;32:222-43.
15. Schäppi R, Rutz D, Dähler F, et al. Drop-in fuels from sunlight and air. Nature 2022;601:63-8.
16. Tian J, Zhong K, Zhu X, et al. Highly exposed active sites of Au nanoclusters for photocatalytic CO2 reduction. Chem Eng J 2023;451:138392.
17. Yang J, Yang Z, Yang K, et al. Indium-based ternary metal sulfide for photocatalytic CO2 reduction application. Chin J Catal 2023;44:67-95.
18. Zhu L, Hu F, Sun B, Gu S, Gao T, Zhou G. Recent advances on multivariate MOFs for photocatalytic CO2 reduction and H2 evolution. Adv Sustain Syst 2023;7:2200394.
19. Zhu Z, Xuan Y, Liu X, Zhu Q. Revealing the stochastic kinetics evolution of photocatalytic CO2 reduction. Nanoscale 2023;15:730-41.
20. Zuo Q, Cui R, Wang L, et al. High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO2 reduction. Sci China Chem 2023;66:570-7.
21. Liu H, Zhu Y, Ma J, Zhang Z, Hu W. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv Funct Mater 2020;30:1910534.
22. He L, Yuan J, Xia N, et al. Kernel tuning and nonuniform influence on optical and electrochemical gaps of bimetal nanoclusters. J Am Chem Soc 2018;140:3487-90.
23. Bootharaju MS, Baek W, Lee S, Chang H, Kim J, Hyeon T. Magic-sized stoichiometric II-VI nanoclusters. Small 2021;17:e2002067.
24. Busatto S, de Mello Donega C. Magic-size semiconductor nanostructures: where does the magic come from? ACS Mater Au 2022;2:237-49.
25. Wang Y, Zhou Y, Zhang Y, Buhro WE. Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg Chem 2015;54:1165-77.
26. Kurashige W, Kumazawa R, Ishii D, et al. Au25-loaded BaLa4Ti4O15 water-splitting photocatalyst with enhanced activity and durability produced using new chromium oxide shell formation method. J Phys Chem C 2018;122:13669-81.
27. Gautam A, Gore PM, Kandasubramanian B. Nanocluster materials in photosynthetic machines. Chem Eng J 2020;385:123951.
28. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 2019;119:7610-72.
29. Shoji S, Yin G, Nishikawa M, Atarashi D, Sakai E, Miyauchi M. Photocatalytic reduction of CO2 by CuO nanocluster loaded SrTiO3 nanorod thin film. Chem Phys Lett 2016;658:309-14.
30. Gao Y, Sun L, Bian J, Zhang Z, Li Z, Jing L. Accelerated charge transfer of g-C3N4/BiVO4 Z-scheme 2D heterojunctions by controllably introducing phosphate bridges and Ag nanocluster co-catalysts for selective CO2 photoreduction to CO. Appl Surf Sci 2023;610:155360.
31. Bo Y, Du P, Li H, et al. Bridging Au nanoclusters with ultrathin LDH nanosheets via ligands for enhanced charge transfer in photocatalytic CO2 reduction. Appl Catal B Environ 2023;330:122667.
32. Chen J, Zhang QF, Bonaccorso TA, Williard PG, Wang LS. Controlling gold nanoclusters by diphospine ligands. J Am Chem Soc 2014;136:92-5.
33. Zhu Q, Huang X, Zeng Y, et al. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters. Nanoscale Adv 2021;3:6330-41.
34. Liu L, Corma A. Metal Catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 2018;118:4981-5079.
35. Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 2017;117:8208-71.
36. Lu H, Chen B, Li Y, et al. Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters. Chem Commun 2022;58:2395-8.
37. Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord Chem Rev 2016;322:1-29.
38. Chai OJH, Liu Z, Chen T, Xie J. Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications. Nanoscale 2019;11:20437-48.
39. Sun Y, Cai X, Hu W, Liu X, Zhu Y. Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Sci China Chem 2021;64:1065-75.
40. Wu J, Xia W, Lan M, et al. Artificial photosynthetic assemblies constructed by the self-assembly of synthetic building blocks for enhanced photocatalytic hydrogen evolution. J Mater Chem A 2020;8:21690-9.
41. Yao Q, Chen T, Yuan X, Xie J. Toward total synthesis of thiolate-protected metal nanoclusters. ACC Chem Res 2018;51:1338-48.
42. Luo Z, Nachammai V, Zhang B, et al. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters. J Am Chem Soc 2014;136:10577-80.
43. Yao Q, Yuan X, Fung V, et al. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat Commun 2017;8:927.
44. Wang S, Li Q, Kang X, Zhu M. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. ACC Chem Res 2018;51:2784-92.
45. Li Y, Zhou M, Jin R. Programmable metal nanoclusters with atomic precision. Adv Mater 2021;33:e2006591.
46. Li G, Jin R. Atomically precise gold nanoclusters as new model catalysts. ACC Chem Res 2013;46:1749-58.
47. Zhou M, Higaki T, Li Y, et al. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J Am Chem Soc 2019;141:19754-64.
48. Pan H, Heagy MD. Photons to formate-a review on photocatalytic reduction of CO2 to formic acid. Nanomaterials 2020;10:2422.
49. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 1995;95:735-58.
50. Habisreutinger SN, Schmidt-mende L, Stolarczyk JK. Photokatalytische reduktion von CO2 an TiO2 und anderen halbleitern. Angew Chem Int Ed 2013;125:7516-57.
51. Yan J, Teo BK, Zheng N. Surface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysis. ACC Chem Res 2018;51:3084-93.
52. Hou B, Kim B, Lee HKH, et al. Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance. Adv Funct Mater 2020;30:2004563.
53. Guo K, Zhu X, Peng L, et al. Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem Eng J 2021;405:127011.
54. Kuhl KP, Cave ER, Abram DN, Jaramillo TF. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 2012;5:7050.
55. Zhou M, Wang S, Yang P, Huang C, Wang X. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal 2018;8:4928-36.
56. Nguyen D, Nguyen C, Do T. Rational one-step synthesis of cobalt clusters embedded-graphitic carbon nitrides for the efficient photocatalytic CO2 reduction under ambient conditions. J Catal 2020;392:88-96.
57. Hansen HA, Varley JB, Peterson AA, Nørskov JK. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J Phys Chem Lett 2013;4:388-92.
58. Rosen BA, Salehi-Khojin A, Thorson MR, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011;334:643-4.
59. Palencia C, Yu K, Boldt K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020;14:1227-35.
60. Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 2016;9:2177-96.
61. Peng S, Zeng X, Li Y. Titanate nanotube modified with different nickel precursors for enhanced Eosin Y-sensitized photocatalytic hydrogen evolution. Int J Hydrog Energy 2015;40:6038-49.
62. Zhang W, Li Y, Zeng X, Peng S. Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Sci Rep 2015;5:10589.
63. Li Y, Xiang Y, Peng S, Wang X, Zhou L. Modification of Zr-doped titania nanotube arrays by urea pyrolysis for enhanced visible-light photoelectrochemical H2 generation. Electrochim Acta 2013;87:794-800.
64. Yin G, Nishikawa M, Nosaka Y, et al. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 2015;9:2111-9.
65. Park D, Jeong Y, Lee J, Lee J, Moon S. Interfacial charge-transfer loss in dye-sensitized solar cells. J Phys Chem C 2013;117:2734-9.
66. Irie H, Miura S, Kamiya K, Hashimoto K. Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem Phys Lett 2008;457:202-5.
67. Irie H, Kamiya K, Shibanuma T, et al. Visible light-sensitive Cu(II)-grafted TiO2 photocatalysts: activities and X-ray absorption fine structure analyses. J Phys Chem C 2009;113:10761-6.
68. Yu H, Irie H, Shimodaira Y, et al. An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. J Phys Chem C 2010;114:16481-7.
69. Liu M, Qiu X, Hashimoto K, Miyauchi M. Cu(II) nanocluster-grafted, Nb-doped TiO2 as an efficient visible-light-sensitive photocatalyst based on energy-level matching between surface and bulk states. J Mater Chem A 2014;2:13571-9.
70. Miyauchi M, Irie H, Liu M, et al. Visible-light-sensitive photocatalysts: nanocluster-grafted titanium dioxide for indoor environmental remediation. J Phys Chem Lett 2016;7:75-84.
71. Kong L, Wang C, Wan F, Zheng H, Zhang X. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light. Appl Surf Sci 2017;396:26-35.
72. Ji Y, Luo Y. New Mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: the essential role of oxygen vacancy. J Am Chem Soc 2016;138:15896-902.
73. Nolan M, Iwaszuk A, Gray KA. Localization of photoexcited electrons and holes on low coordinated Ti and O sites in free and supported TiO2 nanoclusters. J Phys Chem C 2014;118:27890-900.
74. Hurum D, Agrios A, Crist S, Gray K, Rajh T, Thurnauer M. Probing reaction mechanisms in mixed phase TiO2 by EPR. J Electron Spectros Relat Phenomena 2006;150:155-63.
75. Li G, Gray KA. The solid-solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem Phys 2007;339:173-87.
76. Pacchioni G. Oxygen vacancy: the invisible agent on oxide surfaces. Chemphyschem 2003;4:1041-7.
77. Liu M, Qiu X, Miyauchi M, Hashimoto K. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J Am Chem Soc 2013;135:10064-72.
78. Liu M, Sunada K, Hashimoto K, Miyauchi M. Visible-light sensitive Cu(II)-TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J Mater Chem A 2015;3:17312-9.
79. Liu M, Inde R, Nishikawa M, et al. Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts. ACS Nano 2014;8:7229-38.
80. Cheng L, Li B, Yin H, Fan J, Xiang Q. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction. J Mater Sci Technol 2022;118:54-63.
81. Billo T, Fu FY, Raghunath P, et al. Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small 2018;14:1702928.
82. Li Y, Wang C, Song M, Li D, Zhang X, Liu Y. TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Appl Catal B Environ 2019;243:760-70.
83. Hou T, Luo N, Cui Y, et al. Selective reduction of CO2 to CO under visible light by controlling coordination structures of CeOx-S/ZnIn2S4 hybrid catalysts. Appl Catal B Environ 2019;245:262-70.
84. Mrowetz M, Villa A, Prati L, Selli E. Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye. Gold Bull 2007;40:154-60.
85. Yadav A, Li Y, Liao TW, et al. Enhanced methanol electro-oxidation activity of nanoclustered gold. Small 2021;17:e2004541.
86. Liao TW, Verbruggen SW, Claes N, et al. TiO2 films modified with Au nanoclusters as self-cleaning surfaces under visible light. Nanomaterials 2018;8:30.
87. Li Y, Yang Y, Chen G, Fan J, Xiang Q. Au cluster anchored on TiO2/Ti3C2 hybrid composites for efficient photocatalytic CO2 reduction. Rare Met 2022;41:3045-59.
88. Xiao FX, Zeng Z, Hsu SH, Hung SF, Chen HM, Liu B. Light-induced in situ transformation of metal clusters to metal nanocrystals for photocatalysis. ACS Appl Mater Interfaces 2015;7:28105-9.
89. Liu S, Xu YJ. Photo-induced transformation process at gold clusters-semiconductor interface: implications for the complexity of gold clusters-based photocatalysis. Sci Rep 2016;6:22742.
90. Zhou P, Yu J, Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv Mater 2014;26:4920-35.
91. Bard AJ. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 1979;10:59-75.
92. Li H, Tu W, Zhou Y, Zou Z. Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv Sci 2016;3:1500389.
93. Maeda K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 2013;3:1486-503.
94. Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem 2020;6:1543-59.
95. Deng Y, Zhang Z, Du P, et al. Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance. Angew Chem Int Ed 2020;132:6138-45.
96. Xu Q, Wageh S, Al-ghamdi AA, Li X. Design principle of S-scheme heterojunction photocatalyst. J Mater Sci Technol 2022;124:171-3.
97. Li X, Xiong J, Gao X, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J Hazard Mater 2020;387:121690.
98. Xia P, Cao S, Zhu B, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed 2020;59:5218-25.
99. Xu F, Meng K, Cheng B, Wang S, Xu J, Yu J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun 2020;11:4613.
100. Wageh S, A. Al-ghamdi A, Liu L. S-scheme heterojunction photocatalyst for CO2 photoreduction. Acta Physico-Chimica Sinica 2021;37:2010024.
101. Zhang L, Zhang J, Yu H, Yu J. Emerging S-scheme photocatalyst. Adv Mater 2022;34:e2107668.
102. Ke X, Zhang J, Dai K, Fan K, Liang C. Integrated S-scheme heterojunction of amine-functionalized 1D CdSe nanorods anchoring on ultrathin 2D SnNb2O6 Nanosheets for robust solar-driven CO2 conversion. Solar RRL 2021;5:2000805.
103. Férey G. Hybrid porous solids: past, present, future. Chem Soc Rev 2008;37:191-214.
104. Long JR, Yaghi OM. The pervasive chemistry of metal-organic frameworks. Chem Soc Rev 2009;38:1213-4.
105. Bernales V, Ortuño MA, Truhlar DG, Cramer CJ, Gagliardi L. Computational design of functionalized metal-organic framework nodes for catalysis. ACS Cent Sci 2018;4:5-19.
106. Choudhuri I, Truhlar DG. Photogenerated charge separation in a CdSe nanocluster encapsulated in a metal-organic framework for improved photocatalysis. J Phys Chem C 2020;124:8504-13.
107. Jiang Y, Yu Y, Zhang X, et al. N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction. Angew Chem Int Ed 2021;60:17388-93.
108. Sakimoto KK, Kornienko N, Yang P. Cyborgian material design for solar fuel production: the emerging photosynthetic biohybrid systems. ACC Chem Res 2017;50:476-81.
109. Zhang H, Liu H, Tian Z, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat Nanotechnol 2018;13:900-5.