REFERENCES
1. Li C, Tan H, Lin J, et al. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018;21:91-105.
2. Chalgin A, Song C, Tao P, Shang W, Deng T, Wu J. Effect of supporting materials on the electrocatalytic activity, stability and selectivity of noble metal-based catalysts for oxygen reduction and hydrogen evolution reactions. Prog Nat Sci Mater 2020;30:289-97.
3. Wu G, More KL, Johnston CM, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011;332:443-7.
4. Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat Nanotechnol 2021;16:140-7.
5. Liu M, Zhao Z, Duan X, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater 2019;31:e1802234.
6. Miao Z, Wang X, Zhao Z, et al. Improving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel cells through M-N bond length and coordination regulation. Adv Mater 2021;33:e2006613.
7. Li S, Hao X, Abudula A, Guan G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J Mater Chem A 2019;7:18674-707.
8. He Y, Liu S, Priest C, Shi Q, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem Soc Rev 2020;49:3484-524.
9. Wu Z, Zhang H, Chen C, Li G, Han Y. Applications of in situ electron microscopy in oxygen electrocatalysis. Microstructures 2022;2:2022002.
10. Frey H, Beck A, Huang X, van Bokhoven JA, Willinger MG. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022;376:982-7.
11. Zhang W, Chang J, Wang G, et al. Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. Energy Environ Sci 2022;15:1573-84.
12. Miao Z, Li S, Priest C, Wang T, Wu G, Li Q. Effective approaches for designing stable M-Nx/C oxygen-reduction catalysts for proton-exchange-membrane fuel cells. Adv Mater 2022;34:e2200595.
13. Cheng N, Norouzi Banis M, Liu J, et al. Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts. Energy Environ Sci 2015;8:1450-5.
14. Yang Y, Wu D, Li R, et al. Engineering the strong metal support interaction of titanium nitride and ruthenium nanorods for effective hydrogen evolution reaction. Appl Catal B Environ 2022;317:121796.
15. Yan D, Chen J, Jia H. Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst. Angew Chem Int Ed 2020;59:13562-7.
16. Yang H, Lu N, Zhang J, et al. Ultra-low single-atom Pt on g-C3N4 for electrochemical hydrogen peroxide production. Carbon Energy 2023;2:1-12.
17. Ling L, Liu W, Chen S, Hu X, Jiang H. MOF templated nitrogen doped carbon stabilized Pt-Co bimetallic nanoparticles: low Pt content and robust activity toward electrocatalytic oxygen reduction reaction. ACS Appl Nano Mater 2018;1:3331-8.
18. Zhou M, Liu M, Miao Q, Shui H, Xu Q. Synergetic Pt atoms and nanoparticles anchored in standing carbon-derived from covalent organic frameworks for catalyzing ORR. Adv Mater Interfaces 2022;9:2201263.
19. Zhai L, Yang S, Yang X, et al. Conjugated covalent organic frameworks as platinum nanoparticle supports for catalyzing the oxygen reduction reaction. Chem Mater 2020;32:9747-52.
20. Yu X, Guo J, Li B, et al. Sub-nanometer Pt clusters on defective NiFe LDH nanosheets as trifunctional electrocatalysts for water splitting and rechargeable hybrid sodium-air batteries. ACS Appl Mater Interfaces 2021;13:26891-903.
21. Rao P, Deng Y, Fan W, et al. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat Commun 2022;13:5071.
22. Chang F, Xiao M, Miao R, et al. Copper-Based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem Energy Rev 2022;5:139-74.
23. Wu D, Baaziz W, Gu B, et al. Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nat Catal 2021;4:595-606.
24. Deelen TW, Hernández MejÃa C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2019;2:955-70.
25. Wang H, Wang L, Xiao F. New routes for the construction of strong metal-support interactions. Sci China Chem 2022;65:2051-7.
26. Luo Z, Zhao G, Pan H, Sun W. Strong metal-support interaction in heterogeneous catalysts. Adv Energy Mater 2022;12:2201395.
27. Pu T, Zhang W, Zhu M. Engineering heterogeneous catalysis with strong metal-support interactions: characterization, theory and manipulation. Angew Chem Int Ed 2023;62:e202212278.
28. Li Y, Zhang Y, Qian K, Huang W. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts. ACS Catal 2022;12:1268-87.
29. Wu B, Meng H, Morales DM, et al. Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis, characterization, and activity of nitrogen sites. Adv Funct Mater 2022;32:2204137.
30. Bai J, Yang L, Jin Z, Ge J, Xing W. Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction. Chinese J Catal 2022;43:1444-58.
31. Wang J, Kong H, Zhang J, Hao Y, Shao Z, Ciucci F. Carbon-based electrocatalysts for sustainable energy applications. Prog Mater Sci 2021;116:100717.
32. Yang X, Priest C, Hou Y, Wu G. Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. SusMat 2022;2:569-90.
33. Tian X, Lu XF, Xia BY, Lou XW. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020;4:45-68.
34. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108:17886-92.
35. Tian X, Zhao X, Su YQ, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019;366:850-6.
36. Ando F, Gunji T, Tanabe T, et al. Enhancement of the oxygen reduction reaction activity of Pt by tuning its d-band center via transition metal oxide support interactions. ACS Catal 2021;11:9317-32.
37. Tauster SJ, Fung SC, Garten RL. ChemInform abstract: strong metal-support interactions. group 8 noble metals supported on Titanium dioxide. Chemischer Informationsdienst 1978;9:170-5.
38. Tauster S. Strong metal-support interactions: occurrence among the binary oxides of groups IIA-VB. J Catal 1978;55:29-35.
39. Beck A, Huang X, Artiglia L, et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat Commun 2020;11:3220.
40. Wang X, Beck A, van Bokhoven JA, Palagin D. Thermodynamic insights into strong metal-support interaction of transition metal nanoparticles on titania: simple descriptors for complex chemistry. J Mater Chem A 2021;9:4044-54.
41. Zhao W, Zhou D, Han S, et al. Metal-support interaction in Pt/TiO2: formation of surface Pt-Ti alloy. J Phys Chem C 2021;125:10386-96.
42. Du X, Tang H, Qiao B. Oxidative strong metal-support interactions. Catalysts 2021;11:896.
43. Macino M, Barnes AJ, Althahban SM, et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat Catal 2019;2:873-81.
44. Kennedy RM, Crosby LA, Ding K, et al. Replication of SMSI via ALD: TiO2 overcoats increase Pt-catalyzed acrolein hydrogenation selectivity. Catal Lett 2018;148:2223-32.
45. Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J Am Chem Soc 2017;139:11493-9.
46. Zhang L, Persaud R, Theodore EM. Ultrathin metal films on a metal oxide surface: growth of Au on TiO2 (110). Phys Rev B 1997;56:10549-57.
47. Gubó R, Yim CM, Allan M, Pang CL, Berkó A, Thornton G. Variation of SMSI with the Au:Pd ratio of bimetallic nanoparticles on TiO2 (110). Top Catal 2018;61:308-17.
48. Fu Q, Wagner T, Olliges S, Carstanjen HD. Metal-oxide interfacial reactions: encapsulation of Pd on TiO2 (110). J Phys Chem B 2005;109:944-51.
49. Liu X, Liu MH, Luo YC, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J Am Chem Soc 2012;134:10251-8.
50. Tang H, Wei J, Liu F, et al. Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc 2016;138:56-9.
51. Tang H, Su Y, Guo Y, et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts. Chem Sci 2018;9:6679-84.
52. Liu S, Xu W, Niu Y, et al. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat Commun 2019;10:5790.
53. Liu S, Qi H, Zhou J, et al. Encapsulation of platinum by titania under an oxidative atmosphere: contrary to classical strong metal-support interactions. ACS Catal 2021;11:6081-90.
54. Matsubu JC, Zhang S, DeRita L, et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat Chem 2017;9:120-7.
55. Wang X, Liu Y, Peng X, Lin B, Cao Y, Jiang L. Sacrificial adsorbate strategy achieved strong metal-support interaction of stable Cu nanocatalysts. ACS Appl Energy Mater 2018;1:1408-14.
56. Xin H, Lin L, Li R, et al. Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions. J Am Chem Soc 2022;144:4874-82.
57. Li D, Xu F, Tang X, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat Catal 2022;5:99-108.
58. Zhang J, Wang H, Wang L, et al. Wet-chemistry strong metal-support interactions in Titania-supported Au catalysts. J Am Chem Soc 2019;141:2975-83.
59. Hao H, Jin B, Liu W, Wu X, Yin F, Liu S. Robust Pt@TiOx/TiO2 catalysts for hydrocarbon combustion: effects of Pt-TiOx interaction and sulfates. ACS Catal 2020;10:13543-8.
60. Wang L, Zhang J, Zhu Y, et al. Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal 2017;7:7461-5.
61. Dong J, Fu Q, Jiang Z, Mei B, Bao X. Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal-support interaction effect. J Am Chem Soc 2018;140:13808-16.
62. Dong J, Fu Q, Li H, et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J Am Chem Soc 2020;142:17167-74.
63. Sato K, Miyahara S, Tsujimaru K, et al. Barium oxide encapsulating cobalt nanoparticles supported on magnesium oxide: active non-noble metal catalysts for ammonia synthesis under mild reaction conditions. ACS Catal 2021;11:13050-61.
64. Wang H, Wang L, Lin D, et al. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat Catal 2021;4:418-24.
65. Chen H, Yang Z, Wang X, et al. Photoinduced strong metal-support interaction for enhanced catalysis. J Am Chem Soc 2021;143:8521-6.
66. Zhang J, Zhu D, Yan J, Wang CA. Strong metal-support interactions induced by an ultrafast laser. Nat Commun 2021;12:6665.
67. Ma Z, Li S, Wu L, et al. NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy 2020;69:104455.
68. Mirshekari G, Rice C. Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment. J Power Sources 2018;396:606-14.
69. Shi W, Park A, Xu S, Yoo PJ, Kwon Y. Continuous and conformal thin TiO2-coating on carbon support makes Pd nanoparticles highly efficient and durable electrocatalyst. Appl Catal B Environ 2021;284:119715.
70. Deng X, Yin S, Wu X, Sun M, Xie Z, Huang Q. Synthesis of PtAu/TiO2 nanowires with carbon skin as highly active and highly stable electrocatalyst for oxygen reduction reaction. Electrochim Acta 2018;283:987-96.
71. Mirshekari G, Shirvanian A. A comparative study on catalytic activity and stability of TiO2, TiN, and TiC supported Pt electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells environment. J Electroanal Chem 2019;840:391-9.
72. Wang J, Xu M, Zhao J, et al. Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction. Appl Catal B Environ 2018;237:228-36.
73. Shi W, Park A, Li Z, et al. Sub-nanometer thin TiO2-coating on carbon support for boosting oxygen reduction activity and durability of Pt nanoparticles. Electrochim Acta 2021;394:139127.
74. Li J, Zhou H, Zhuo H, et al. Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. J Mater Chem A 2018;6:2264-72.
75. Chen Y, Chen J, Zhang J, Xue Y, Wang G, Wang R. Anchoring highly dispersed Pt electrocatalysts on TiOx with strong metal-support interactions via an oxygen vacancy-assisted strategy as durable catalysts for the oxygen reduction reaction. Inorg Chem 2022;61:5148-56.
76. Huynh TT, Pham HQ, Nguyen AV, Nguyen ST, Bach LG, Ho VTT. High conductivity and surface area of mesoporous Ti0.7W0.3O2 materials as promising catalyst support for Pt in proton-exchange membrane fuel cells. J Nanosci Nanotechnol 2019;19:877-81.
77. Subban CV, Zhou Q, Hu A, Moylan TE, Wagner FT, DiSalvo FJ. Sol-Gel synthesis, electrochemical characterization, and stability testing of Ti0.7W0.3O2 nanoparticles for catalyst support applications in proton-exchange membrane fuel cells. J Am Chem Soc 2010;132:17531-6.
78. Hsieh B, Tsai M, Pan C, et al. Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst. NPG Asia Mater 2017;9:e403-e403.
79. Shahgaldi S, Hamelin J. The effect of low platinum loading on the efficiency of PEMFC’s electrocatalysts supported on TiO2-Nb, and SnO2-Nb: an experimental comparison between active and stable conditions. Energy Convers Manag 2015;103:681-90.
80. Wang Y, Wilkinson DP, Guest A, et al. Synthesis of Pd and Nb-doped TiO2 composite supports and their corresponding Pt-Pd alloy catalysts by a two-step procedure for the oxygen reduction reaction. J Power Sources 2013;221:232-41.
81. Senevirathne K, Neburchilov V, Alzate V, et al. Nb-doped TiO2/carbon composite supports synthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts. J Power Sources 2012;220:1-9.
82. Bing Y, Neburchilov V, Song C, et al. Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts. Electrochim Acta 2012;77:225-31.
83. Huang S, Ganesan P, Popov BN. Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Appl Catal B Environ 2010;96:224-31.
84. Noh K, Nam I, Han JW. Nb-TiO2 nanotubes as catalyst supports with high activity and durability for oxygen reduction. Appl Surf Sci 2020;521:146330.
85. Kim J, Kwon G, Lim H, Zhu C, You H, Kim Y. Effects of transition metal doping in Pt/M-TiO2 (M = V, Cr, and Nb) on oxygen reduction reaction activity. J Power Sources 2016;320:188-95.
86. Kim J, Chang S, Kim Y. Compressive strain as the main origin of enhanced oxygen reduction reaction activity for Pt electrocatalysts on chromium-doped titania support. Appl Catal B Environ 2014;158-159:112-8.
87. Ho VT, Pan CJ, Rick J, Su WN, Hwang BJ. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem Soc 2011;133:11716-24.
88. Tsai M, Nguyen T, Akalework NG, et al. Interplay between molybdenum dopant and oxygen vacancies in a TiO2 support enhances the oxygen reduction reaction. ACS Catal 2016;6:6551-9.
89. Kumar A, Ramani V. Strong metal-support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts. ACS Catal 2014;4:1516-25.
90. Stassi A, Gatto I, Baglio V, Passalacqua E, Aricò AS. Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells. Appl Catal B Environ 2013;142-143:15-24.
91. Noh K, Im H, Lim C, Jang MG, Nam I, Han JW. Tunable nano-distribution of Pt on TiO2 nanotubes by atomic compression control for high-efficient oxygen reduction reaction. Chem Eng J 2022;427:131568.
92. Tsai M, Rick J, Su W, Hwang B. Design of transition-metal-doped TiO2 as a multipurpose support for fuel cell applications: using a computational high-throughput material screening approach. Mol Syst Des Eng 2017;2:449-56.
93. Murphin Kumar PS, Ponnusamy VK, Deepthi KR, et al. Controlled synthesis of Pt nanoparticle supported TiO2 nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2018;6:23435-44.
94. Masuda T, Fukumitsu H, Fugane K, et al. Role of cerium oxide in the enhancement of activity for the oxygen reduction reaction at Pt-CeOx nanocomposite electrocatalyst - an in situ electrochemical X-ray absorption fine structure study. J Phys Chem C 2012;116:10098-102.
95. Chen J, Li Z, Chen Y, et al. An enhanced activity of Pt/CeO2/CNT triple junction interface catalyst prepared by atomic layer deposition for oxygen reduction reaction. Chem Phys Lett 2020;755:137793.
96. Du C, Gao X, Cheng C, Zhuang Z, Li X, Chen W. Metal organic framework for the fabrication of mutually interacted Pt CeO2C ternary nanostructure: advanced electrocatalyst for oxygen reduction reaction. Electrochim Acta 2018;266:348-56.
97. Xu F, Wang D, Sa B, Yu Y, Mu S. One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC. Int J Hydrog Energy 2017;42:13011-9.
98. Tan N, Lei Y, Huo D, et al. Fabricating Pt/CeO2/N-C ternary ORR electrocatalysts with extremely low platinum content and excellent performance. J Mater Sci 2022;57:538-52.
99. Lu Q, Wang Z, Tang Y, et al. Well-controlled Pt-CeO2-nitrogen doped carbon triple-junction catalysts with enhanced activity and durability for the oxygen reduction reaction. Sustain Energy Fuels 2022;6:2989-95.
100. Kim GY, Yoon KR, Shin K, Jung JW, Henkelman G, Ryu WH. Black tungsten oxide nanofiber as a robust support for metal catalysts: high catalyst loading for electrochemical oxygen reduction. Small 2021;17:e2103755.
101. Kumar S, Bhange SN, Soni R, Kurungot S. WO3 nanorods bearing interconnected Pt nanoparticle units as an activity-modulated and corrosion-resistant carbon-free system for polymer electrolyte membrane fuel cells. ACS Appl Energy Mater 2020;3:1908-21.
102. Jin Y. WO3 modified graphene supported Pt electrocatalysts with enhanced performance for oxygen reduction reaction. Int J Electrochem Sci 2017;12:6535-44.
103. Mo Y, Feng S, Yu T, et al. Surface unsaturated WOx activating PtNi alloy nanowires for oxygen reduction reaction. J Colloid Interface Sci 2022;607:1928-35.
104. Lee J, Yim D, Park JH, et al. Tuning d-band centers by coupling PdO nanoclusters to WO3 nanosheets to promote the oxygen reduction reaction. J Mater Chem A 2020;8:13490-500.
105. Song Z, Banis MN, Zhang L, et al. Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition. Nano Energy 2018;53:716-25.
106. Gao W, Zhang Z, Dou M, Wang F. Highly dispersed and crystalline Ta2O5 anchored Pt electrocatalyst with improved activity and durability toward oxygen reduction: promotion by atomic-scale Pt-Ta2O5 interactions. ACS Catal 2019;9:3278-88.
107. Hung Y, Liu W, Chen Y, Wang K, Perng T. On the mesoporous TiN catalyst support for proton exchange membrane fuel cell. Int J Hydrog Energy 2020;45:14083-92.
108. Tian X, Luo J, Nan H, Fu Z, Zeng J, Liao S. Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. J Mater Chem A 2015;3:16801-9.
109. Tian X, Luo J, Nan H, et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J Am Chem Soc 2016;138:1575-83.
110. Shin H, Kim H, Chung DY, et al. Scaffold-like titanium nitride nanotubes with a highly conductive porous architecture as a nanoparticle catalyst support for oxygen reduction. ACS Catal 2016;6:3914-20.
111. Pan Z, Xiao Y, Fu Z, et al. Hollow and porous titanium nitride nanotubes as high-performance catalyst supports for oxygen reduction reaction. J Mater Chem A 2014;2:13966.
112. Xiao Y, Zhan G, Fu Z, et al. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Electrochim Acta 2014;141:279-85.
113. Chen X, Li W, Pan Z, et al. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction. Appl Surf Sci 2018;440:193-201.
114. Chen X, Pan Z, Zhou Q, et al. Pt nanoparticles supported on non-carbon titanium chromium nitride nanotubes with high activity and durability for methanol oxidation reaction. J Solid State Electrochem 2019;23:315-24.
115. Wu Z, Dang D, Tian X. Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl Mater Interfaces 2019;11:9117-24.
116. Yu F, Xie Y, Tang H, et al. Platinum decorated hierarchical porous structures composed of ultrathin titanium nitride nanoflakes for efficient methanol oxidation reaction. Electrochim Acta 2018;264:216-24.
117. Zheng Y, Zhang J, Zhan H, Sun D, Dang D, Tian XL. Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochem Commun 2018;91:31-5.
118. Feng G, Pan Z, Xu Y, et al. Platinum decorated mesoporous titanium cobalt nitride nanorods catalyst with promising activity and CO-tolerance for methanol oxidation reaction. Int J Hydrog Energy 2018;43:17064-8.
119. Yuan Z, Cao Y, Zhang Z, et al. Dandelion-like titanium nitride supported platinum as an efficient oxygen reduction catalyst in acidic media. Int J Hydrog Energy 2022;47:15035-43.
120. Yang M, Van Wassen AR, Guarecuco R, Abruña HD, DiSalvo FJ. Nano-structured ternary niobium titanium nitrides as durable non-carbon supports for oxygen reduction reaction. Chem Commun 2013;49:10853-5.
121. Xiao Y, Fu Z, Zhan G, et al. Increasing Pt methanol oxidation reaction activity and durability with a titanium molybdenum nitride catalyst support. J Power Sources 2015;273:33-40.
122. Tian X, Tang H, Luo J, Nan H, Shu T. High-performance core-shell catalyst with nitride nanoparticles as a core: well-defined titanium copper nitride coated with an atomic Pt layer for the oxygen reduction reaction. ACS Catal 2017;7:3810-7.
123. Liu Q, Du L, Fu G, et al. Structurally ordered Fe3Pt nanoparticles on robust nitride support as a high performance catalyst for the oxygen reduction reaction. Adv Energy Mater 2019;9:1803040.
124. Nan H, Dang D, Tian XL. Structural engineering of robust titanium nitride as effective platinum support for the oxygen reduction reaction. J Mater Chem A 2018;6:6065-73.
125. Yin J, Wang L, Tian C, et al. Low-Pt loaded on a vanadium nitride/graphitic carbon composite as an efficient electrocatalyst for the oxygen reduction reaction. Chemistry 2013;19:13979-86.
126. Kim NY, Lee JH, Kwon JA, et al. Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction. J Ind Eng Chem 2017;46:298-303.
127. Zheng J, Zhang W, Zhang J, et al. Recent advances in nanostructured transition metal nitrides for fuel cells. J Mater Chem A 2020;8:20803-18.
128. Yang M, Cui Z, DiSalvo FJ. Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Phys Chem Chem Phys 2013;15:7041-4.
129. Yang M, Guarecuco R, Disalvo FJ. Mesoporous chromium nitride as high performance catalyst support for methanol electrooxidation. Chem Mater 2013;25:1783-7.
130. Liu B, Huo L, Si R, Liu J, Zhang J. A general method for constructing two-dimensional layered mesoporous mono- and binary-transition-metal nitride/graphene as an ultra-efficient support to enhance its catalytic activity and durability for electrocatalytic application. ACS Appl Mater Interfaces 2016;8:18770-87.
131. Chemler SR, Bovino MT. Catalytic aminohalogenation of alkenes and alkynes. ACS Catal 2013;3:1076-91.
132. He C, Tao J. Transition metal carbides coupled with nitrogen-doped carbon as efficient and stable Bi-functional catalysts for oxygen reduction reaction and hydrogen evolution reaction. Int J Hydrog Energy 2022;47:13240-50.
133. Hunt ST, Milina M, Alba-Rubio AC, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016;352:974-8.
134. Yue R, Xia M, Wang M, et al. TiN and TiC as stable and promising supports for oxygen reduction reaction: theoretical and experimental study. Appl Surf Sci 2019;495:143620.
135. Lee Y, Ahn JH, Park H, et al. Support structure-catalyst electroactivity relation for oxygen reduction reaction on platinum supported by two-dimensional titanium carbide. Nano Energy 2021;79:105363.
136. Xie X, Chen S, Ding W, Nie Y, Wei Z. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem Commun 2013;49:10112-4.
137. Ignaszak A, Song C, Zhu W, et al. Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochim Acta 2012;69:397-405.
138. Xie X, Xue Y, Li L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 2014;6:11035-40.
139. Min P, Li C, Ding L, Jian Z, Liang C. Microwave-assisted preparation of Mo2C/CNTs nanocomposites as efficient electrocatalyst supports for oxygen reduction reaction. Ind Eng Chem Res 2010;175:275-8.
140. Cheng C, Zhang X, Fu Z, Yang Z. Strong metal-support interactions impart activity in the oxygen reduction reaction: Au monolayer on Mo2C (MXene). J Phys Condens Matter 2018;30:475201.
141. Saha S, Cabrera Rodas JA, Tan S, Li D. Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells. J Power Sources 2018;378:742-9.
142. Hamo ER, Rosen BA. Improved durability and activity in Pt/Mo2C fuel cell cathodes by magnetron sputtering of tantalum. ChemElectroChem 2021;8:3123-34.
143. Elbaz L, Phillips J, Artyushkova K, More K, Brosha EL. Evidence of high electrocatalytic activity of molybdenum carbide supported platinum nanorafts. J Electrochem Soc 2015;162:H681-5.
144. Krishnamurthy CB, Lori O, Elbaz L, Grinberg I. First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction. J Phys Chem Lett 2018;9:2229-34.
145. Schweitzer NM, Schaidle JA, Ezekoye OK, Pan X, Linic S, Thompson LT. High activity carbide supported catalysts for water gas shift. J Am Chem Soc 2011;133:2378-81.
146. Zhang K, Yang W, Ma C, et al. A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Mater 2015;7:e153-e153.
147. Li Q, Ma Z, Sa R, et al. Computation-predicted, stable, and inexpensive single-atom nanocatalyst Pt@Mo2C-an important advanced material for H2 production. J Mater Chem A 2017;5:14658-72.
148. Huang X, Wang J, Gao J, Zhang Z, Gan LY, Xu H. Structural evolution and underlying mechanism of single-atom centers on Mo2C (100) support during oxygen reduction reaction. ACS Appl Mater Interfaces 2021;13:17075-84.
149. Zhang L, Yang T, Zang W, et al. Quasi-paired Pt atomic sites on Mo2C promoting selective four-electron oxygen reduction. Adv Sci 2021;8:e2101344.
150. Gao W, Liu T, Zhang Z, Dou M, Wang F. Stabilization of Pt nanoparticles at the Ta2O5-TaC binary junction: an effective strategy to achieve high durability for oxygen reduction. J Mater Chem A 2020;8:5525-34.
151. Begum M, Yurukcu M, Yurtsever F, et al. Pt-Ni/WC alloy nanorods arrays as ORR catalyst for PEM fuel cells. ECS Trans 2017;80:919-25.
152. Yurtsever FM, Yurukcu M, Begum M, Watanabe F, Karabacak T. Stacked and core-shell Pt:Ni/WC nanorod array electrocatalyst for enhanced oxygen reduction reaction in polymer electrolyte membrane fuel cells. ACS Appl Energy Mater 2018;1:6115-22.
153. Nabil Y, Cavaliere S, Harkness I, Sharman J, Jones D, Rozière J. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes. J Power Sources 2017;363:20-6.
154. Stamatin SN, Skou EM. Pt/NbC-N electrocatalyst for use in proton exchange membrane fuel cells. ECS Trans 2013;58:1267-76.
155. Justin P, Charan PHK, Rao GR. Activated zirconium carbide promoted Pt/C electrocatalyst for oxygen reduction. Appl Catal B Environ 2014;144:767-74.
156. Hamo ER, Rosen BA. Transition metal carbides as cathode supports for PEM fuel cells. Nano Res 2022;15:10218-33.
157. Wang Y, Wang M, Lu Z, Ma D, Jia Y. Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T’-MoS2 with anchored transition metal single atoms. Nanoscale 2021;13:13390-400.
158. Logeshwaran N, Panneerselvam IR, Ramakrishnan S, et al. Quasihexagonal platinum nanodendrites decorated over CoS2-N-doped reduced graphene oxide for electro-oxidation of C1-, C2-, and C3-type alcohols. Adv Sci 2022;9:e2105344.
159. Bothra P, Pandey M, Pati SK. Size-selective electrocatalytic activity of (Pt)n/MoS2 for oxygen reduction reaction. Catal Sci Technol 2016;6:6389-95.
160. Anwar MT, Yan X, Asghar MR, et al. MoS2-rGO hybrid architecture as durable support for cathode catalyst in proton exchange membrane fuel cells. Chinese J Catal 2019;40:1160-7.
161. Wei L, Ang EH, Yang Y, et al. Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. J Power Sources 2020;477:228696.
162. Wang D, Song Y, Zhang H, Yan X, Guo J. Recent advances in transition metal borides for electrocatalytic oxygen evolution reaction. J Electroanal Chem 2020;861:113953.
163. Cao S, Sun T, Li J, Li Q, Hou C, Sun Q. The cathode catalysts of hydrogen fuel cell: from laboratory toward practical application. Nano Res 2023;16:4365-80.
164. Kumar S, Yoyakki A, Pandikassala A, Soni R, Kurungot S. Pt-anchored-zirconium phosphate nanoplates as high-durable carbon-free oxygen reduction reaction electrocatalyst for PEM fuel cell applications. Adv Sustain Syst 2023;7:2200330.
165. Yin S, Mu S, Lv H, Cheng N, Pan M, Fu Z. A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Appl Catal B Environ 2010;93:233-40.
166. Yin S, Mu S, Pan M, Fu Z. A highly stable TiB2-supported Pt catalyst for polymer electrolyte membrane fuel cells. J Power Sources 2011;196:7931-6.
167. Huang Z, Lin R, Fan R, Fan Q, Ma J. Effect of TiB2 pretreatment on Pt/TiB2 catalyst performance. Electrochim Acta 2014;139:48-53.
168. Zhang C, Ma B, Zhou Y, Wang C. Highly active and durable Pt/MXene nanocatalysts for ORR in both alkaline and acidic conditions. J Electroanal Chem 2020;865:114142.
169. Ponnada S, Kiai MS, Gorle DB, et al. Recent status and challenges in multifunctional electrocatalysis based on 2D MXenes. Catal Sci Technol 2022;12:4413-41.
170. Peera SG, Liu C, Sahu AK, et al. Recent advances on MXene-based electrocatalysts toward oxygen reduction reaction: a focused review. Adv Mater Interfaces 2021;8:2100975.
171. Huang X, Song M, Zhang J, et al. Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Res 2022;15:3927-32.
172. Xu C, Fan C, Zhang X, et al. MXene (Ti3C2Tx) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC. ACS Appl Mater Interfaces 2020;12:19539-46.
173. Yang X, Zhang Y, Fu Z, et al. Tailoring the electronic structure of transition metals by the V2C MXene support: excellent oxygen reduction performance triggered by metal-support interactions. ACS Appl Mater Interfaces 2020;12:28206-16.
174. Wei B, Fu Z, Legut D, et al. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv Mater 2021;33:e2102595.
175. Li Z, Cui Y, Wu Z, et al. Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat Catal 2018;1:349-55.
176. Du L, Shao Y, Sun J, Yin G, Liu J, Wang Y. Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 2016;29:314-22.
177. Samad S, Loh KS, Wong WY, et al. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int J Hydrog Energy 2018;43:7823-54.
178. Gao Y, Kong D, Liang J, et al. Inside-out dual-doping effects on tubular catalysts: structural and chemical variation for advanced oxygen reduction performance. Nano Res 2022;15:361-7.
179. Liu X, Zhao Z, Liang J, et al. Inducing covalent atomic interaction in intermetallic Pt alloy nanocatalysts for high-performance fuel cells. Angew Chem Int Ed 2023;62:e202302134.
180. Xiao F, Wang Y, Xu GL, et al. Fe-N-C boosts the stability of supported platinum nanoparticles for fuel cells. J Am Chem Soc 2022;144:20372-84.