REFERENCES

1. Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys 2011;83:1057-110.

2. Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015;525:73-6.

3. Bednorz JG, Müller KA. Possible highTc superconductivity in the Ba-La-Cu-O system. Z Phys B Condens Matter 1986;64:189-93.

4. Schilling A, Cantoni M, Guo JD, Ott HR. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 1993;363:56-8.

5. Vergniory MG, Menshchikova TV, Eremeev SV, Chulkov EV. Bulk and surface electronic structure of SnBi4Te7 topological insulator. Appl Surf Sci 2013;267:146-9.

6. Vergniory MG, Menshchikova TV, Silkin IV, Koroteev YM, Eremeev SV, Chulkov EV. Electronic and spin structure of a family of Sn-based ternary topological insulators. Phys Rev B 2015;92:045134.

7. Souma S, Eto K, Nomura M, et al. Topological surface states in lead-based ternary telluride Pb(Bi1-xSbx)2Te4. Phys Rev Lett 2012;108:116801.

8. Neupane M, Xu SY, Wray LA, et al. Topological surface states and dirac point tuning in ternary topological insulators. Phys Rev B 2012;85:235406.

9. Zhu J, Zhang JL, Kong PP, et al. Superconductivity in topological insulator Sb2Te3 induced by pressure. Sci Rep 2013;3:2016.

10. Zhang JL, Zhang SJ, Weng HM, et al. Pressure-induced superconductivity in topological parent compound Bi2Te3. Proc Natl Acad Sci USA 2011;108:24-8.

11. Kirshenbaum K, Syers PS, Hope AP, et al. Pressure-induced unconventional superconducting phase in the topological insulator Bi2Se3. Phys Rev Lett 2013;111:087001.

12. Polvani DA, Meng JF, Chandra Shekar NV, Sharp J, Badding JV. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chem Mater 2001;13:2068-71.

13. Shelimova LE, Karpinskii OG, Zemskov VS, Konstantinov PP. Structural and electrical properties of layered tetradymite-like compounds in the GeTe-Bi2Te3 and GeTe-Sb2Te3 systems. Inorg Mater 2000;36:235-42.

14. Shelimova LE, Konstantinov PP, Karpinsky OG, Avilov E, Kretova M, Zemskov V. X-ray diffraction study and electrical and thermal transport properties of the nGeTe·mBi2Te3 homologous series compounds. J Alloys Compd 2001;329:50-62.

15. Li R, Liu G, Jing Q, et al. Pressure-induced superconductivity and structural transitions in topological insulator SnBi2Te4. J Alloys Compd 2022;900:163371.

16. Vilaplana R, Sans JA, Manjón FJ, et al. Structural and electrical study of the topological insulator SnBi2Te4 at high pressure. J Alloys Compd 2016;685:962-70.

17. Wang Y, Ma Y, Liu G, et al. Experimental observation of the high pressure induced substitutional solid solution and phase transformation in Sb2S3. Sci Rep 2018;8:14795.

18. Xi X, Ma C, Liu Z, et al. Signatures of a pressure-induced topological quantum phase transition in BiTeI. Phys Rev Lett 2013;111:155701.

19. Niesner D, Otto S, Hermann V, et al. Bulk and surface electron dynamics in a p-type topological insulator SnSb2Te4. Phys Rev B 2014;89:081404.

20. Sans JA, Vilaplana R, da Silva EL, et al. Characterization and decomposition of the natural van der waals SnSb2Te4 under compression. Inorg Chem 2020;59:9900-18.

21. Chandra S, Sunil J, Dutta P, et al. Evidence of pressure-induced multiple electronic topological transitions in BiSe. Mater Today Phys 2023;30:100956.

22. Song P, Matsumoto R, Hou Z, et al. Pressure-induced superconductivity in SnSb2Te4. J Phys Condens Matter 2020;32:235901.

23. Zhao X, Zhang K, Qi J, et al. Low-pressure-driven barocaloric effects at colinear-to-triangular antiferromagnetic transitions in Mn3-xPt1+x. Microstructures 2023;3:2023022.

24. Matsumoto R, Hou Z, Hara H, et al. Two pressure-induced superconducting transitions in SnBi2Se4 explored by data-driven materials search: new approach to developing novel functional materials including thermoelectric and superconducting materials. Appl Phys Express 2018;11:093101.

25. Greenberg E, Hen B, Layek S, et al. Superconductivity in multiple phases of compressed GeSb2Te4. Phys Rev B 2017;95:064514.

26. Matsumoto R, Hou Z, Nagao M, et al. Data-driven exploration of new pressure-induced superconductivity in PbBi2Te4. Sci Technol Adv Mater 2018;19:909-16.

27. Mao HK, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 1986;91:4673-6.

28. Prescher C, Prakapenka VB. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res 2015;35:223-30.

29. Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Cryst 2001;34:210-3.

30. Nakano K, Akahama Y, Ohishi Y, Kawamura H. Ruby scale at low temperatures calibrated by the NaCl gauge: wavelength shift of ruby R1 fluorescence line at high pressure and low temperature. Jpn J Appl Phys 2000;39:1249.

31. Xu LW, Che RZ, Jin CQ. Measurement of R line fluorescence in ruby using the diamond anvil cell at low temperature. Chin Phys Lett 2000;17:555-7.

32. Akahama Y, Kawamura H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J Phys Conf Ser 2010;215:012195.

33. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996;54:11169-86.

34. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

35. Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50:17953-79.

36. Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B 1976;13:5188-92.

37. Oeckler O, Schneider MN, Fahrnbauer F, Vaughan G. Atom distribution in SnSb2Te4 by resonant X-ray diffraction. Solid State Sci 2011;13:1157-61.

38. Einaga M, Ohmura A, Nakayama A, Ishikawa F, Yamada Y, Nakano S. Pressure-induced phase transition of Bi2Te3 to a bcc structure. Phys Rev B 2011;83:092102.

39. Nakayama A, Einaga M, Tanabe Y, Nakano S, Ishikawa F, Yamada Y. Structural phase transition in Bi2Te3 under high pressure. High Pressure Res 2009;29:245-9.

40. Vilaplana R, Santamaría-pérez D, Gomis O, et al. Structural and vibrational study of Bi2Se3 under high pressure. Phys Rev B 2011;84:184110.

41. Ma Y, Liu G, Zhu P, et al. Determinations of the high-pressure crystal structures of Sb2Te3. J Phys Condens Matter 2012;24:475403.

42. Efthimiopoulos I, Zhang JM, Kucway M, Park C, Ewing RC, Wang Y. Sb2Se3 under pressure. Sci Rep 2013;3:2665.

43. Sorb YA, Rajaji V, Malavi PS, et al. Pressure-induced electronic topological transition in Sb2S3. J Phys Condens Matter 2016;28:015602.

44. Nielsen MB, Parisiades P, Madsen SR, Bremholm M. High-pressure phase transitions in ordered and disordered Bi2Te2Se. Dalton Trans 2015;44:14077-84.

45. Gomis O, Vilaplana R, Manjón FJ, et al. Lattice dynamics of Sb2Te3 at high pressures. Phys Rev B 2011;84:174305.

46. Vilaplana R, Gomis O, Manjón FJ, et al. High-pressure vibrational and optical study of Bi2Te3. Phys Rev B 2011;84:104112.

47. Zhang SJ, Zhang JL, Yu XH, et al. The comprehensive phase evolution for Bi2Te3 topological compound as function of pressure. J Appl Phys 2012;111:112630.

48. Jeffries JR, Lima Sharma AL, Sharma PA, et al. Distinct superconducting states in the pressure-induced metallic structures of the nominal semimetal Bi4Te3. Phys Rev B 2011;84:092505.

49. Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field, Hc2. III. electron spin and spin-orbit effects. Phys Rev 1966;147:295.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/