REFERENCES

1. Jin H, Xu J, Liu H, et al. Emerging materials and technologies for electrocatalytic seawater splitting. Sci Adv 2023;9:eadi7755.

2. Xu J, Jin H, Lu T, et al. IrOx·nH2O with lattice water-assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers. Sci Adv 2023;9:eadh1718.

3. Xia B, He B, Zhang J, et al. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv Energy Mater 2022;12:2201449.

4. Zhang Y, Yao D, Xia B, Jaroniec M, Ran J, Qiao S. Photocatalytic CO2 reduction: identification and elimination of false-positive results. ACS Energy Lett 2022;7:1611-7.

5. Zhang Y, Zhi X, Harmer JR, et al. Facet-specific active surface regulation of BixMOy (M=Mo, V, W) Nanosheets for boosted photocatalytic CO2 reduction. Angew Chem Int Ed 2022;61:e202212355.

6. Zhang Y, Johannessen B, Zhang P, Gong J, Ran J, Qiao SZ. Reversed electron transfer in dual single atom catalyst for boosted photoreduction of CO2. Adv Mater 2023;35:e2306923.

7. Xia B, Yang Y, Zhang Y, et al. Metal-organic framework with atomically dispersed Ni-N4 sites for greatly-raised visible-light photocatalytic H2 production. Chem Eng J 2022;431:133944.

8. Zhang Q, Zhang TT, Li FY, Xu L. Pompon-like NiCo2O4 nanospheres: a potential candidate for the counter electrode in quantum dot-sensitized solar cells. Tungsten 2023;5:235-46.

9. Yu LH, Tao X, Feng SR, et al. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten 2024;6:196-211.

10. Wang X, Zheng Y, Sheng W, Xu ZJ, Jaroniec M, Qiao S. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today 2020;36:125-38.

11. Kou T, Wang S, Li Y. Perspective on high-rate alkaline water splitting. ACS Mater Lett 2021;3:224-34.

12. Ifkovits ZP, Evans JM, Meier MC, Papadantonakis KM, Lewis NS. Decoupled electrochemical water-splitting systems: a review and perspective. Energy Environ Sci 2021;14:4740-59.

13. Hu C, Zhang L, Gong J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ Sci 2019;12:2620-45.

14. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 2021;33:2007100.

15. Clean Hydrogen Market. Available from: https://www.precedenceresearch.com/clean-hydrogen-market [Last accessed on 7 Apr 2024].

16. Zahra R, Pervaiz E, Yang M, et al. A review on nickel cobalt sulphide and their hybrids: earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int J Hydrogen Energy 2020;45:24518-43.

17. Yao D, Zhang Y, Zhang S, Wan J, Yu H, Jin H. Hybrid water electrolysis with integrated and cascading reactions using two-dimensional electrocatalysts. J Mater Chem A 2023;11:16433-57.

18. Xia B, Zhang Y, Shi B, Ran J, Davey K, Qiao S. Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods 2020;4:2000063.

19. Chi J, Jiang Z, Yan J, et al. Recent advancements in bismuth vanadate photoanodes for photoelectrochemical water splitting. Mater Today Chem 2022;26:101060.

20. Xiao M, Wang Z, Maeda K, Liu G, Wang L. Addressing the stability challenge of photo(electro)catalysts towards solar water splitting. Chem Sci 2023;14:3415-27.

21. Liu N, Liu Y, Liu Y, Li Y, Cheng Y, Li H. Modulation of photogenerated holes for enhanced photoelectrocatalytic performance. Microstructures 2023;3:2023001.

22. Pan JB, Wang BH, Shen S, Chen L, Yin SF. Introducing bidirectional axial coordination into BiVO4 @metal phthalocyanine core-shell photoanodes for efficient water oxidation. Angew Chem Int Ed 2023;62:202307246.

23. Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 2010;36:307-26.

24. Falcão DS, Pinto AMFR. A review on PEM electrolyzer modelling: guidelines for beginners. J Clean Prod 2020;261:121184.

25. Nechache A, Hody S. Alternative and innovative solid oxide electrolysis cell materials: a short review. Renew Sustain Energy Rev 2021;149:111322.

26. Xiao M, Zhang Y, You J, et al. Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel production. J Phys Energy 2022;4:042005.

27. Monny SA, Wang Z, Konarova M, Wang L. Bismuth based photoelectrodes for solar water splitting. J Energy Chem 2021;61:517-30.

28. Zakaria Z, Kamarudin SK. A review of alkaline solid polymer membrane in the application of AEM electrolyzer: materials and characterization. Int J Energy Res 2021;45:18337-54.

29. David M, Ocampo-Martínez C, Sánchez-Peña R. Advances in alkaline water electrolyzers: a review. J Energy Stor 2019;23:392-403.

30. Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2012;2:1765-72.

31. Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P. Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem Solid-State Lett 2010;13:B36.

32. Danilovic N, Subbaraman R, Chang KC, et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 2014;53:14016-21.

33. Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv 2016;2:e1501602.

34. Hansen JN, Prats H, Toudahl KK, et al. Is there anything better than Pt for HER? ACS Energy Lett 2021;6:1175-80.

35. Kraglund MR, Carmo M, Schiller G, et al. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers. Energy Environ Sci 2019;12:3313-8.

36. Hodges A, Hoang AL, Tsekouras G, et al. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nat Commun 2022;13:1304.

37. Park S, Liu L, Demirkır Ç, et al. Solutal marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat Chem 2023;15:1532-40.

38. Xu Q, Liang L, Nie T, She Y, Tao L, Guo L. Effect of electrolyte pH on oxygen bubble behavior in photoelectrochemical water splitting. J Phys Chem C 2023;127:5308-20.

39. Ju W, Heinz MVF, Pusterla L, et al. Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation. ACS Sustain Chem Eng 2018;6:4829-37.

40. Kou T, Wang S, Shi R, et al. Periodic porous 3D electrodes mitigate gas bubble traffic during alkaline water electrolysis at high current densities. Adv Energy Mater 2020;10:2002955.

41. Schalenbach M, Kasian O, Mayrhofer KJ. An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation. Int J Hydrogen Energy 2018;43:11932-8.

42. Schalenbach M, Zeradjanin AR, Kasian O, Cherevko S, Mayrhofer KJ. A perspective on low-temperature water electrolysis - challenges in alkaline and acidic technology. Int J Electrochem Sci 2018;13:1173-226.

43. Shinagawa T, Takanabe K. Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: electrolyte engineering. ChemSusChem 2017;10:1318-36.

44. Chung DY, Lopes PP, Farinazzo Bergamo Dias Martins P, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat Energy 2020;5:222-30.

45. Renaud R, Leroy RL. Separator materials for use in alkaline water electrolysers. Int J Hydrogen Energy 1982;7:155-66.

46. Lee JW, Lee C, Lee JH, et al. Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer. Polymers 2020;12:2821.

47. Brauns J, Schönebeck J, Kraglund MR, et al. Evaluation of diaphragms and membranes as separators for alkaline water electrolysis. J Electrochem Soc 2021;168:014510.

48. Zhao X, He D, Xia BY, Sun Y, You B. Ambient electrosynthesis toward single-atom sites for electrocatalytic green hydrogen cycling. Adv Mater 2023;35:e2210703.

49. Gao M, Sheng W, Zhuang Z, et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 2014;136:7077-84.

50. Gao Q, Huang CQ, Ju YM, et al. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew Chem Int Ed 2017;56:7769-73.

51. Meng Y, Song W, Huang H, Ren Z, Chen SY, Suib SL. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 2014;136:11452-64.

52. Smith RDL, Prévot MS, Fagan RD, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013;340:60-3.

53. Wu H, Yang T, Du Y, Shen L, Ho GW. Identification of facet-governing reactivity in hematite for oxygen evolution. Adv Mater 2018;30:e1804341.

54. Feng LL, Yu G, Wu Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc 2015;137:14023-6.

55. Li XX, Liu XC, Liu C, Zeng JM, Qi XP. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting. Tungsten 2023;5:100-8.

56. Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed 2016;55:5277-81.

57. Ling T, Yan DY, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat Commun 2016;7:12876.

58. Wu YJ, Yang J, Tu TX, et al. Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew Chem Int Ed 2021;60:26829-36.

59. Yu ZY, Duan Y, Liu JD, et al. Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nat Commun 2019;10:2799.

60. Chen G, Zhu Y, Chen HM, et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv Mater 2019;31:e1900883.

61. Liu Y, Liang X, Gu L, et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat Commun 2018;9:2609.

62. Zhang B, Zheng X, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016;352:333-7.

63. Wang F, Zou P, Zhang Y, et al. Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nat Commun 2023;14:6019.

64. Nguyen TX, Tsai CC, Nguyen VT, et al. High entropy promoted active site in layered double hydroxide for ultra-stable oxygen evolution reaction electrocatalyst. Chem Eng J 2023;466:143352.

65. Ding Y, Wang Z, Liang Z, et al. A monolayer high-entropy layered hydroxide frame for efficient oxygen evolution reaction. Adv Mater 2023:2302860.

66. Ryu J, Jung N, Jang JH, Kim H, Yoo SJ. In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units. ACS Catal 2015;5:4066-74.

67. Chen P, Xu K, Fang Z, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed 2015;127:14923-7.

68. Ahn SH, Hwang SJ, Yoo SJ, et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. J Mater Chem 2012;22:15153-9.

69. Kim M, Kim J, Qin L, Mathew S, Han Y, Li OL. Gas-liquid interfacial plasma engineering under dilute nitric acid to improve hydrophilicity and OER performance of nickel foam. Prog Nat Sci Mater Int 2022;32:608-16.

70. Zhang Y, Teng X, Ma Z, Wang R, Lau W, Shan A. Cu2O-templated fabrication of Ni(OH)2·0.75H2O hollow tubes for electrocatalytic oxygen evolution reaction. Prog Nat Sci Mater Int 2022;32:554-60.

71. Zhang J, Wang T, Liu P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun 2017;8:15437.

72. Li Y, Tan X, Chen S, et al. Processable surface modification of nickel-heteroatom (N, S) Bridge sites for promoted alkaline hydrogen evolution. Angew Chem Int Ed 2019;58:461-6.

73. Menezes PW, Panda C, Garai S, Walter C, Guiet A, Driess M. Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting. Angew Chem Int Ed 2018;57:15237-42.

74. Hong SH, Ahn SH, Choi I, et al. Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting. Appl Sur Sci 2014;307:146-52.

75. Mondal S, Dutta S, Mal S, Pati SK, Bhattacharyya S. Lattice mismatch guided nickel-indium heterogeneous alloy electrocatalysts for promoting the alkaline hydrogen evolution. Angew Chem Int Ed 2023;62:e202301269.

76. Mao F, Wang ZG, Cheng L, et al. Electrodeposited multimetal alloyed NiMoCo on Ni mesh for efficient alkaline hydrogen evolution reaction. Energy Fuels 2023;37:18137-44.

77. Lu Q, Hutchings GS, Yu W, et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 2015;6:6567.

78. Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Trends in the chemical properties of early transition metal carbide surfaces: a density functional study. Catal Today 2005;105:66-73.

79. Gong Q, Wang Y, Hu Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat Commun 2016;7:13216.

80. Li H, Li L, Li Y. The electronic structure and geometric structure of nanoclusters as catalytic active sites. Nanotechnol Rev 2013;2:515-28.

81. Tabassum H, Guo W, Meng W, et al. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv Energy Mater 2017;7:1601671.

82. Yang F, Chen Y, Cheng G, Chen S, Luo W. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal 2017;7:3824-31.

83. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014;9:373-82.

84. Rao Y, Wang S, Zhang R, et al. Nanoporous V-Doped Ni5P4 microsphere: a highly efficient electrocatalyst for hydrogen evolution reaction at all pH. ACS Appl Mater Interfaces 2020;12:37092-9.

85. Zhang J, Shang X, Ren H, et al. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv Mater 2019;31:e1905107.

86. Wiensch JD, John J, Velazquez JM, et al. Comparative study in acidic and alkaline media of the effects of pH and crystallinity on the hydrogen-evolution reaction on MoS2 and MoSe2. ACS Energy Lett 2017;2:2234-8.

87. Yan Y, Xia B, Xu Z, Wang X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 2014;4:1693-705.

88. Hao J, Yang W, Peng Z, Zhang C, Huang Z, Shi W. A nitrogen doping method for CoS2 electrocatalysts with enhanced water oxidation performance. ACS Catal 2017;7:4214-20.

89. Miao R, Dutta B, Sahoo S, et al. Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J Am Chem Soc 2017;139:13604-7.

90. Zheng YR, Wu P, Gao MR, et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat Commun 2018;9:2533.

91. Yin J, Jin J, Zhang H, et al. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew Chem Int Ed 2019;131:18849-55.

92. Gong M, Zhou W, Tsai MC, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun 2014;5:4695.

93. Zou X, Huang X, Goswami A, et al. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem Int Ed 2014;53:4372-6.

94. Yu F, Zhou H, Huang Y, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun 2018;9:2551.

95. Jin M, Zhang X, Shi R, et al. Hierarchical CoP@Ni2P catalysts for pH-universal hydrogen evolution at high current density. Appl Catal B Environ 2021;296:120350.

96. Jin H, Wang X, Tang C, et al. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv Mater 2021;33:e2007508.

97. Liu H, Shen W, Jin H, et al. High-performance alkaline seawater electrolysis with anomalous chloride promoted oxygen evolution reaction. Angew Chem Int Ed 2023;62:e202311674.

98. Yu H, Wan J, Goodsite M, Jin H. Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth 2023;6:267-77.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/