1. Ghori SW, Siakeng R, Rasheed M, Saba N, Jawaid M. 2 - The role of advanced polymer materials in aerospace. In: Jawaid M, Thariq M, editors. Sustainable composites for aerospace applications. Elsevier; 2018, pp. 19-34.
2. Sathishkumar T, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites - a review. J Reinf Plast Compos 2014;33:1258-75.
3. Mouritz A, Gellert E, Burchill P, Challis K. Review of advanced composite structures for naval ships and submarines. Compos Struct 2001;53:21-42.
4. Talreja R. Transverse cracking and stiffness reduction in composite laminates. J Compos Mater 1985;19:355-75.
5. Li J, Zhang Z, Fu J, Liang Z, Ramakrishnan KR. Mechanical properties and structural health monitoring performance of carbon nanotube-modified FRP composites: a review. Nanotechnol Rev 2021;10:1438-68.
6. Silversides I, Maslouhi A, LaPlante G. Acoustic emission monitoring of interlaminar delamination onset in carbon fibre composites. Struct Heal Monit 2013;12:126-40.
7. Safri SNAB, Sultan MTH, Jawaid M. 7 - Damage analysis of glass fiber reinforced composites. In: Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Elsevier; 2019. pp. 133-47.
8. Wu S, Ladani RB, Ravindran AR, et al. Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability. Compos Sci Technol 2017;152:46-56.
9. Senthil K, Arockiarajan A, Palaninathan R, Santhosh B, Usha KM. Defects in composite structures: its effects and prediction methods - a comprehensive review. Compos Struct 2013;106:139-49.
10. Dong H, Liu H, Nishimura A, et al. Monitoring strain response of epoxy resin during curing and cooling using an embedded strain gauge. Sensors 2020;21:172.
11. Dawood TA, Shenoi RA, Sahin M. A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures. Compos Part A Appl Sci Manuf 2007;38:217-26.
12. Di Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors 2015;15:18666-713.
13. Ramakrishnan M, Rajan G, Semenova Y, Farrell G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 2016;16:99.
14. Tuloup C, Harizi W, Aboura Z, Meyer Y, Khellil K, Lachat R. On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: a literature review. Compos Struct 2019;215:127-49.
15. Rocha H, Semprimoschnig C, Nunes JP. Sensors for process and structural health monitoring of aerospace composites: a review. Eng Struct 2021;237:112231.
16. Su Y, Xu L, Zhou P, et al. In situ cure monitoring and in-service impact localization of FRPs using pre-implanted nanocomposite sensors. Compos Part A Appl Sci Manuf 2022;154:106799.
17. Konka HP, Wahab MA, Lian K. On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors. J Eng Mater Technol 2012;134:011010.
18. Xiao Y, Qiao W, Fukuda H, Hatta H. The effect of embedded devices on structural integrity of composite laminates. Compos Struct 2016;153:21-9.
19. Zhang F, Gong L, Wang F, et al. Embedded Pt-PVDF sensor without compromising mechanical properties of GFRP for on-line sensing. Thin-Walled Struct 2023;187:110702.
20. Wang Q, Tian Y, Duongthipthewa A, et al. An embedded non-intrusive graphene/epoxy broadband nanocomposite sensor co-cured with GFRP for in situ structural health monitoring. Compos Sci Technol 2023;236:109995.
21. Yang G, Feng X, Wang W, OuYang Q, Liu L. Effective interlaminar reinforcing and delamination monitoring of carbon fibrous composites using a novel nano-carbon woven grid. Compos Sci Technol 2021;213:108959.
22. Kravchenko OG, Pedrazzoli D, Kovtun D, Qian X, Manas-Zloczower I. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring. J Phys Chem Solids 2018;112:163-70.
23. Du X, Zhou H, Sun W, et al. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos Sci Technol 2017;140:123-33.
24. Zhang H, Liu Y, Bilotti E, Peijs T. In-situ monitoring of interlaminar shear damage in carbon fibre composites. Adv Compos Lett 2015;24:096369351502400.
25. Li M, Li S, Xiao J, Fu Y, Zhu W, Ke Y. An integrated nanofiller spray and nanosecond pulse electrically-assisted method for synergistically interlaminar toughening and in-situ damage monitoring of CFRP composites. Compos Part B Eng 2024;275:111355.
26. Liu H, Qu P, Yu S, Xu Y, Jia Y. Low-cost carbon black-loaded functional films for interlaminar toughening and in-situ delamination monitoring of carbon fiber/epoxy composites. J Appl Polym Sci 2022;139:52170.
27. Wan Y, Yang H, Tian Z, et al. Mode I interlaminar crack length prediction by the resistance signal of the integrated MWCNT sensor in WGF/epoxy composites during DCB test. J Mater Res Technol 2020;9:5922-33.
28. Kravchenko OG, Pedrazzoli D, Bonab VS, Manas-Zloczower I. Conductive interlaminar interfaces for structural health monitoring in composite laminates under fatigue loading. Mater Des 2018;160:1217-25.
29. Liu Y, Luo H, Xie H, et al. Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers. Microstructures 2023;3:2023008.
30. Yang W, Li N, Zhao S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv Mater Technol 2018;3:1700241.
31. Rani SD, Ramachandran R, Sheet S, et al. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sensors Actuat B Chem 2020;312:127886.
32. Lin L, Park S, Kim Y, et al. Wearable and stretchable conductive polymer composites for strain sensors: how to design a superior one? Nano Mater Sci 2023;5:392-403.
33. Cao T, Shi XL, Zou J, Chen ZG. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures 2021;1:2021007.
34. Ding B, Wang M, Yu J, Sun G. Gas sensors based on electrospun nanofibers. Sensors 2009;9:1609-24.
35. Zheng N, Song Y, Lan M, Dong X, Zhou H, Gao J. Improved interlaminar property of carbon fiber/epoxy composites with polyurethane/RGO core-shell structure fibrous mat. Compos Commun 2023;44:101748.
36. Cheng WH, Wu PL, Huang HH. Electrospun polyvinylidene fluoride piezoelectric fiber glass/carbon hybrid self-sensing composites for structural health monitoring. Sensors 2023;23:3813.
37. Leung CM, Chen X, Wang T, et al. Enhanced electromechanical response in PVDF-BNBT composite nanofibers for flexible sensor applications. Materials 2022;15:1769.
38. Chen X, Cheng S, Wen K, et al. In-situ damage self-monitoring of fiber-reinforced composite by integrating self-powered ZnO nanowires decorated carbon fabric. Compos Part B Eng 2023;248:110368.
39. Dubois D, Esteva F, Garcia P, Godo L, De Màntaras RL, Prade H. Case-based reasoning: a fuzzy approach. In: Ralescu AL, Shanahan JG, editors. Fuzzy logic in artificial intelligence. Berlin: Springer; 1999. pp. 79-90.
40. Chen X, Cheng S, Wang S, et al. Embedding stretchable, mesh-structured piezoresistive sensor for in-situ damage detection of glass fiber-reinforced composite. Compos Sci Technol 2023;233:109926.
41. Sánchez-Romate X, González C, Jiménez-Suárez A, Prolongo SG. Novel approach for damage detection in multiscale CNT-reinforced composites via wireless Joule heating monitoring. Compos Sci Technol 2022;227:109614.
42. Kang J, Liu T, Lu Y, et al. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos Part B Eng 2022;245:110229.
43. Rubio-González C, de Urquijo-Ventura MDP, Rodríguez-González JA. Damage progression monitoring using self-sensing capability and acoustic emission on glass fiber / epoxy composites and damage classification through principal component analysis. Compos Part B Eng 2023;254:110608.
44. De Rosa IM, Sarasini F. Use of PVDF as acoustic emission sensor for in situ monitoring of mechanical behaviour of glass/epoxy laminates. Polym Test 2010;29:749-58.
45. Bae JH, Lee SW, Chang SH. Characterization of low-velocity impact-induced damages in carbon/epoxy composite laminates using a poly(vinylidene fluoride-trifluoroethylene) film sensor. Compos Part B Eng 2018;135:189-200.
46. Masmoudi S, El Mahi A, Turki S. Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant. Appl Acoust 2016;108:50-8.
47. Feng T, Aliabadi MHF. Structural integrity assessment of composites plates with embedded PZT transducers for structural health monitoring. Materials 2021;14:6148.
48. Konka HP, Wahab MA, Lian K. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate. Smart Mater Struct 2012;21:015016.
49. Buggisch C, Gibhardt D, Felmet N, Tetzner Y, Fiedler B. Strain sensing in GFRP via fully integrated carbon nanotube epoxy film sensors. Compos Part C Open Access 2021;6:100191.
50. Reghat M, Mirabedini A, Tan AM, et al. Graphene as a piezo-resistive coating to enable strain monitoring in glass fiber composites. Compos Sci Technol 2021;211:108842.
51. Han S, Li Q, Cui Z, et al. Non-destructive testing and structural health monitoring technologies for carbon fiber reinforced polymers: a review. Nondestruct Test Eval 2024;39:725-61.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.