1. Chouhan L, Ghimire S, Subrahmanyam C, Miyasaka T, Biju V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem Soc Rev 2020;49:2869-85.
2. Pérez-Fidalgo L, Xu K, Charles BL, et al. Anomalous electron-phonon coupling in cesium-substituted methylammonium lead iodide perovskites. J Phys Chem C 2023;127:22817-26.
3. Spera EL, Pereyra CJ, Gau DL, Berruet M, Marotti RE. Excitonic optical properties of CH3NH3PbI3 perovskite and its dependence with temperature. MRS Adv 2024;9:39-44.
4. Jošt M, Kegelmann L, Korte L, Albrecht S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv Energy Mater 2020;10:1904102.
5. Duan L, Walter D, Chang N, et al. Stability challenges for the commercialization of perovskite-silicon tandem solar cells. Nat Rev Mater 2023;8:261-81.
6. Schuck G, Többens DM, Wallacher D, Grimm N, Tien TS, Schorr S. Temperature-dependent EXAFS measurements of the Pb L3-edge allow quantification of the anharmonicity of the lead-halide bond of chlorine-substituted methylammonium (MA) lead triiodide. J Phys Chem C 2022;126:5388-402.
7. Weadock NJ, Mackeen C, Qin X, et al. Thermal contributions to the local and long-range structural disorder in CH3NH3PbBr3. PRX Energy 2023;2:033004.
8. Schuck G, Lehmann F, Ollivier J, Mutka H, Schorr S. Influence of chloride substitution on the rotational dynamics of methylammonium in MAPbI3-xClx perovskites. J Phys Chem C 2019;123:11436-46.
9. Miyata K, Atallah TL, Zhu XY. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci Adv 2017;3:e1701469.
10. Tailor NK, Satapathi S. Crystalline-liquid duality of specific heat in halide perovskite semiconductor. Scr Mater 2023;223:115061.
11. Adams DJ, Churakov SV. Classification of perovskite structural types with dynamical octahedral tilting. IUCrJ 2023;10:309-20.
12. Liang X, Klarbring J, Baldwin WJ, Li Z, Csányi G, Walsh A. Structural dynamics descriptors for metal halide perovskites. J Phys Chem C Nanomater Interfaces 2023;127:19141-51.
13. Weadock NJ, Sterling TC, Vigil JA, et al. The nature of dynamic local order in CH3NH3PbI3 and CH3NH3PbBr3. Joule 2023;7:1051-66.
14. Beecher AN, Semonin OE, Skelton JM, et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett 2016;1:880-7.
15. Page K, Siewenie JE, Quadrelli P, Malavasi L. Short-range order of methylammonium and persistence of distortion at the local scale in MAPbBr3 hybrid perovskite. Angew Chem Int Ed 2016;55:14320-4.
16. Bernasconi A, Malavasi L. Direct evidence of permanent octahedra distortion in MAPbBr3 hybrid perovskite. ACS Energy Lett 2017;2:863-8.
17. Bird TA, Chen J, Songvilay M, et al. Large dynamic scissoring mode displacements coupled to band gap opening in hybrid perovskites. arXiv 2021. Available from: https://arxiv.org/abs/2108.05751 [Last accessed on 7 Aug 2024].
18. Simenas M, Gagor A, Banys J, Maczka M. Phase transitions and dynamics in mixed three- and low-dimensional lead halide perovskites. Chem Rev 2024;124:2281-326.
19. Kutes Y, Ye L, Zhou Y, Pang S, Huey BD, Padture NP. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J Phys Chem Lett 2014;5:3335-9.
20. Bari M, Bokov AA, Ye Z. Ferroelastic domains and phase transitions in organic-inorganic hybrid perovskite CH3NH3PbBr3. J Mater Chem C 2021;9:3096-107.
21. Bari M, Bokov AA, Leach GW, Ye Z. Ferroelastic domains and effects of spontaneous strain in lead halide perovskite CsPbBr3. Chem Mater 2023;35:6659-70.
22. Wilson JN, Frost JM, Wallace SK, Walsh A. Dielectric and ferroic properties of metal halide perovskites. APL Mater 2019;7:010901.
23. Breternitz J. The “ferros” of MAPbI3: ferroelectricity, ferroelasticity and its crystallographic foundations in hybrid halide perovskites. Cryst Mater 2022;237:135-40.
24. Ambrosio F, De Angelis F, Goñi AR. The ferroelectric-ferroelastic debate about metal halide perovskites. J Phys Chem Lett 2022;13:7731-40.
25. Zheng W, Wang X, Zhang X, et al. Emerging halide perovskite ferroelectrics. Adv Mater 2023;35:e2205410.
26. Haeger T, Heiderhoff R, Riedl T. Thermal properties of metal-halide perovskites. J Mater Chem C 2020;8:14289-311.
27. Jacobsson TJ, Schwan LJ, Ottosson M, Hagfeldt A, Edvinsson T. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorg Chem 2015;54:10678-85.
28. Bozec Y, Kaang S, Hine P, Ward I. The thermal-expansion behaviour of hot-compacted polypropylene and polyethylene composites. Composit Sci Technol 2000;60:333-44.
29. Becker P, Scyfried P, Siegert H. The lattice parameter of highly pure silicon single crystals. Z Physik B Condens Matter 1982;48:17-21.
30. Ge C, Hu M, Wu P, et al. Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic-inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I). J Phys Chem C 2018;122:15973-8.
31. Zhou Y, Guo Z, Qaid SMH, Xu Z, Zhou Y, Zang Z. Strain engineering toward high-performance formamidinium-based perovskite solar cells. Solar RRL 2023;7:2300438.
32. Katan C, Mohite AD, Even J. Entropy in halide perovskites. Nat Mater 2018;17:377-9.
33. Fornasini P, Grisenti R. On EXAFS debye-waller factor and recent advances. J Synchrotron Rad 2015;22:1242-57.
34. Sanson A. EXAFS spectroscopy: a powerful tool for the study of local vibrational dynamics. Microstructures 2021;1:2021004.
35. Schuck G, Többens DM, Koch-müller M, Efthimiopoulos I, Schorr S. Infrared spectroscopic study of vibrational modes across the orthorhombic-tetragonal phase transition in methylammonium lead halide single crystals. J Phys Chem C 2018;122:5227-37.
36. Whitfield PS, Herron N, Guise WE, et al. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci Rep 2016;6:35685.
37. Franz A, Többens DM, Schorr S. Interaction between cation orientation, octahedra tilting and hydrogen bonding in methylammonium lead triiodide. Cryst Res Technol 2016;51:534-40.
38. Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 2013;52:9019-38.
39. Celeste A, Capitani F. Hybrid perovskites under pressure: present and future directions. J Appl Phys 2022;132:220903.
40. Szafrański M, Katrusiak A. Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J Phys Chem Lett 2016;7:3458-66.
41. Gil-González E, Pérez-Maqueda LA, Sánchez-Jiménez PE, Perejón A. Paving the way to establish protocols: modeling and predicting mechanochemical reactions. J Phys Chem Lett 2021;12:5540-6.
42. Whitfield PS, Herron N, Guise WE, et al. Correction: Corrigendum: structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci Rep 2017;7:42831.
43. Schorr S, Sheptyakov D. Low-temperature thermal expansion in sphalerite-type and chalcopyrite-type multinary semiconductors. J Phys Condens Matter 2008;20:104245.
44. Haussühl S. Kristallphysik; Weinheim, Germany: Physic-Verlag; 1983.
45. Feng J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater 2014;2:081801.
46. Campbell BJ, Stokes HT, Tanner DE, Hatch DM. ISODISPLACE: a web-based tool for exploring structural distortions. J Appl Cryst 2006;39:607-14.
47. Liu J, Du J, Phillips AE, Wyatt PB, Keen DA, Dove MT. Neutron powder diffraction study of the phase transitions in deuterated methylammonium lead iodide. J Phys Condens Matter 2022;34:145401.
48. Egami T, Billinge SJL. Underneath the bragg peaks: structural analysis of complex materials; Oxford: Elsevier; 2003.
49. Billinge SJ. Nanoscale structural order from the atomic pair distribution function (PDF): there’s plenty of room in the middle. J Solid State Chem 2008;181:1695-700.
50. Bird TA, Herlihy A, Senn MS. Symmetry-adapted pair distribution function analysis (SAPA): a novel approach to evaluating lattice dynamics and local distortions from total scattering data. J Appl Cryst 2021;54:1514-20.
51. Bird TA, Woodland-Scott J, Hu L, et al. Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6. Phys Rev B 2020;101:064306.
52. Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 2005;12:537-41.
53. Bunker G. Application of the ratio method of EXAFS analysis to disordered systems. Nucl Instrum Methods Phys Res 1983;207:437-44.
54. Bunker G. Introduction to EXAFS; Cambridge: Cambridge University Press; 2010.
55. Fornasini P, a Beccara S, Dalba G, et al. Extended X-ray-absorption fine-structure measurements of copper: local dynamics, anharmonicity, and thermal expansion. Phys Rev B 2004;70:174301.
56. Fornasini P, Grisenti R. The coefficient of bond thermal expansion measured by extended X-ray absorption fine structure. J Chem Phys 2014;141:164503.
57. Fornasini P. Vibrational anisotropy. In: Schnohr CS, Ridgway MC, editors. X-ray absorption spectroscopy of semiconductors. Berlin: Springer; 2015. pp. 127-42.
58. Attfield JP. Mechanisms and materials for NTE. Front Chem 2018;6:371.
59. Dove MT, Fang H. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation. Rep Prog Phys 2016;79:066503.
60. Dalba G, Diop D, Fornasini P, Rocca F. An EXAFS study of thermal disorder in GaAs. J Phys Condens Matter 1994;6:3599-608.
61. Dalba G, Fornasini P, Kuzmin A, Purans J, Rocca F. X-ray absorption spectroscopy study of ReO3 lattice dynamics. J Phys Condens Matter 1995;7:1199-213.
62. Talit K, Strubbe DA. Stress effects on vibrational spectra of a cubic hybrid perovskite: a probe of local strain. J Phys Chem C 2020;124:27287-99.
63. Gava V, Martinotto AL, Perottoni CA. First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. Phys Rev Lett 2012;109:195503.
64. Boldyrev KN, Anikeeva VE, Semenova OI, Popova MN. Infrared spectra of the CH3NH3PbI3 hybrid perovskite: signatures of phase transitions and of organic cation dynamics. J Phys Chem C 2020;124:23307-16.
65. Železný V, Kadlec C, Kamba S, Repček D, Kundu S, Saidaminov MI. Infrared and terahertz studies of phase transitions in the CH3NH3PbBr3 perovskite. Phys Rev B 2023;107:174113.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.