1. Fang Y, Hou Y, Fu X, Wang X. Semiconducting polymers for oxygen evolution reaction under light illumination. Chem Rev 2022;122:4204-56.
2. Kranz C, Wächtler M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes. Chem Soc Rev 2021;50:1407-37.
3. Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T. Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc Chem Res 2022;55:933-43.
4. Pan J, Shen S, Chen L, Au C, Yin S. Core-shell photoanodes for photoelectrochemical water oxidation. Adv Funct Mater 2021;31:2104269.
5. Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv Sci 2020;7:1902102.
6. Niu F, Wang D, Li F, Liu Y, Shen S, Meyer TJ. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Adv Energy Mater 2020;10:1900399.
7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8.
8. Zhao E, Du K, Yin PF, et al. Advancing photoelectrochemical energy conversion through atomic design of catalysts. Adv Sci 2022;9:e2104363.
9. Marwat MA, Humayun M, Afridi MW, et al. Advanced catalysts for photoelectrochemical water splitting. ACS Appl Energy Mater 2021;4:12007-31.
10. Corby S, Rao RR, Steier L, Durrant JR. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat Rev Mater 2021;6:1136-55.
11. Yao T, An X, Han H, Chen JQ, Li C. Photoelectrocatalytic materials for solar water splitting. Adv Energy Mater 2018;8:1800210.
12. Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat Catal 2022;5:300-10.
13. Zhuang Z, Huang J, Li Y, Zhou L, Mai L. The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances. ChemElectroChem 2019;6:3570-89.
14. Huang J, Zhuang Z, Zhao Y, et al. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew Chem Int Ed Engl 2022;61:e202203522.
15. Sun R, Zhang Z, Li Z, Jing L. Review on photogenerated hole modulation strategies in photoelectrocatalysis for solar fuel production. ChemCatChem 2019;11:5875-84.
16. Rahman MZ, Edvinsson T, Gascon J. Hole utilization in solar hydrogen production. Nat Rev Chem 2022;6:243-58.
17. Sahoo PP, Mikolášek M, Hušeková K, et al. Si-based metal-insulator-semiconductor structures with RuO2-(IrO2) films for photoelectrochemical water oxidation. ACS Appl Energy Mater 2021;4:11162-72.
18. Zhang B, Yu S, Dai Y, et al. Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes. Nat Commun 2021;12:6969.
19. Wang J, Liao T, Wei Z, Sun J, Guo J, Sun Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 2021;5:e2000988.
20. Liu G, Yang Y, Li Y, et al. Band structure engineering toward low-onset-potential photoelectrochemical hydrogen production. ACS Mater Lett 2020;2:1555-60.
21. Li F, Benetti D, Zhang M, Feng J, Wei Q, Rosei F. Modulating the 0D/2D interface of hybrid semiconductors for enhanced photoelectrochemical performances. Small Methods 2021;5:e2100109.
22. Tashakory A, Karjule N, Abisdris L, Volokh M, Shalom M. Mediated growth of carbon nitride films via spray-coated seeding layers for photoelectrochemical applications. Adv Sustain Syst 2021;5:2100005.
23. Karjule N, Singh C, Barrio J, et al. Carbon nitride-based photoanode with enhanced photostability and water oxidation kinetics. Adv Funct Mater 2021;31:2101724.
24. Thorne JE, Jang JW, Liu EY, Wang D. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem Sci 2016;7:3347-54.
25. Wang X, Sun W, Tian Y, et al. Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced photoelectrochemical water oxidation. Small 2021;17:e2100367.
26. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 2011;4:958-64.
27. Jiang P, Yu K, Yuan H, et al. Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. J Mater Chem A 2021;9:9809-14.
28. Zhang T, Lu S. Sacrificial agents for photocatalytic hydrogen production: effects, cost, and development. Chem Catalysis 2022;2:1502-5.
29. Shen S, Lindley SA, Chen X, Zhang JZ. Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ Sci 2016;9:2744-75.
30. Prasad U, Young JL, Johnson JC, et al. Enhancing interfacial charge transfer in a WO3/BiVO4 photoanode heterojunction through gallium and tungsten co-doping and a sulfur modified Bi2O3 interfacial layer. J Mater Chem A 2021;9:16137-49.
31. Sun D, Zhang X, Shi A, et al. Metal-free boron doped g-C3N5 catalyst: efficient doping regulatory strategy for photocatalytic water splitting. Appl Surface Sci 2022;601:154186.
32. Nyarige JS, Paradzah AT, Krüger TPJ, Diale M. Mono-Doped and Co-Doped nanostructured hematite for improved photoelectrochemical water splitting. Nanomaterials 2022;12:366.
33. Meng L, Rao D, Tian W, Cao F, Yan X, Li L. Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance. Angew Chem Int Ed Engl 2018;57:16882-7.
34. Yang R, Zhu R, Fan Y, Hu L, Chen Q. In situ synthesis of C-doped BiVO4 with natural leaf as a template under different calcination temperatures. RSC Adv 2019;9:14004-10.
35. Wen L, Li X, Zhang R, et al. Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation. ACS Appl Mater Interfaces 2021;13:14181-8.
36. Wang S, Wang X, Liu B, et al. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting. Nanoscale 2021;13:17989-8009.
37. Pan JB, Wang BH, Wang JB, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew Chem Int Ed Engl 2021;60:1433-40.
38. Zhang R, Ning X, Wang Z, et al. Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH Co-catalyst. Small 2022;18:e2107938.
39. Ji M, Chen R, Di J, et al. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J Colloid Interface Sci 2019;533:612-20.
40. Zhao Q, Liu Z, Guo Z, Ruan M, Yan W. The collaborative mechanism of surface S-vacancies and piezoelectric polarization for boosting CdS photoelectrochemical performance. Chem Eng J 2022;433:133226.
41. Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH. Dual Oxygen and tungsten vacancies on a WO3 Photoanode for enhanced water oxidation. Angew Chem Int Ed Engl 2016;55:11819-23.
42. Fernández-climent R, Giménez S, García-tecedor M. The role of oxygen vacancies in water splitting photoanodes. Sustain Energy Fuels 2020;4:5916-26.
43. Xu W, Tian W, Meng L, Cao F, Li L. Interfacial chemical bond-modulated z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv Energy Mater 2021;11:2003500.
44. Li J, Yuan H, Zhang W, et al. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A review. Carbon Energy 2022;4:294-331.
45. Mane P, Bae H, Burungale V, et al. Interface-engineered Z-scheme of BiVO4/g-C3N4 photoanode for boosted photoelectrochemical water splitting and organic contaminant elimination under solar light. Chemosphere 2022;308:136166.
46. Maity D, Karmakar K, Pal D, Saha S, Khan GG, Mandal K. One-dimensional p-ZnCo2O4/n-ZnO nanoheterojunction photoanode enabling photoelectrochemical water splitting. ACS Appl Energy Mater 2021;4:11599-608.
47. Ho W, Chen J, Wu J. Epitaxial, energetic, and morphological synergy on photocharge collection of the Fe2TiO5/ZnO nanodendrite heterojunction array photoelectrode for photoelectrochemical water oxidation. ACS Sustain Chem Eng 2021;9:8868-78.
48. Hao J, Zhuang Z, Cao K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat Commun 2022;13:2662.
49. Dong G, Hu H, Huang X, Zhang Y, Bi Y. Rapid activation of Co3O4 cocatalysts with oxygen vacancies on TiO2 photoanodes for efficient water splitting. J Mater Chem A 2018;6:21003-9.
50. Cao X, Wang Y, Lin J, Ding Y. Ultrathin CoOx nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes. J Mater Chem A 2019;7:6294-303.
51. Li H, Yin M, Li X, Mo R. Enhanced photoelectrochemical water oxidation performance in bilayer TiO2/α-Fe2O3 Nanorod Arrays Photoanode with Cu:NiOx as hole transport layer and Co-Pi as Cocatalyst. ChemSusChem 2021;14:2331-40.
52. Wei J, Zhou C, Xin Y, Li X, Zhao L, Liu Z. Cooperation effect of heterojunction and co-catalyst in BiVO4/Bi2S3/NiOOH photoanode for improving photoelectrochemical performances. New J Chem 2018;42:19415-22.
53. Zhang B, Huang X, Hu H, Chou L, Bi Y. Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting. J Mater Chem A 2019;7:4415-9.
54. Wang T, Long X, Wei S, et al. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH Cocatalysts. ACS Appl Mater Interfaces 2020;12:49705-12.
55. Vo T, Tai Y, Chiang C. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Appl Catalysis B Environ 2019;243:657-66.
56. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes. J Am Chem Soc 2012;134:16693-700.
57. Li M, Liu T, Yang Y, et al. Zipping Up NiFe(OH)x-encapsulated hematite to achieve an ultralow turn-on potential for water oxidation. ACS Energy Lett 2019;4:1983-90.
58. Zhang K, Liu J, Wang L, et al. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis. J Am Chem Soc 2020;142:8641-8.
59. Liu Z, Du Y, Zhang P, Zhuang Z, Wang D. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021;4:3161-94.
60. Kaplan A, Yuan Z, Benck JD, et al. Current and future directions in electron transfer chemistry of graphene. Chem Soc Rev 2017;46:4530-71.
61. Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR. CNT based photoelectrodes for PEC generation of hydrogen: a review. Inter J Hydrog Energy 2017;42:3994-4006.
62. Kang Z, Lee ST. Carbon dots: advances in nanocarbon applications. Nanoscale 2019;11:19214-24.
63. Ali M, Pervaiz E, Sikandar U, Khan Y. A review on the recent developments in zirconium and carbon-based catalysts for photoelectrochemical water-splitting. Inter J Hydrog Energy 2021;46:18257-83.
64. Zhao Z, Zheng L, Hu W, Zheng H. Synergistic effect of silane and graphene oxide for enhancing the photoelectrochemical water oxidation performance of WO3NS arrays. Electrochimica Acta 2018;292:322-30.
65. Ðorđević L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat Nanotechnol 2022;17:112-30.
66. Zhai Y, Zhang B, Shi R, et al. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Advan Energy Mater 2022;12:2103426.
67. Liang Q, Yan X, Li Z, et al. Replacing Ru complex with carbon dots over MOF-derived Co3O4/In2O3 catalyst for efficient solar-driven CO2 reduction. J Mater Chem A 2022;10:4279-87.
68. Li F, Liu Y, Chen Q, et al. Transient photovoltage study of the kinetics and synergy of electron/hole co-extraction in MoS2/Ag-In-Zn-S/carbon dot photocatalysts for promoted hydrogen production. Chem Eng J 2022;439:135759.
69. Ye K, Wang Z, Gu J, et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci 2017;10:772-9.
70. Wang Y, Godin R, Durrant JR, Tang J. Efficient Hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions. Angew Chem Int Ed Engl 2021;60:20811-6.
71. Wang Y, Liu X, Han X, et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat Commun 2020;11:2531.
72. Zhou T, Chen S, Wang J, et al. Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem Eng J 2021;403:126350.
73. Choi Y, Bae S, Kim B, Ryu J. Atomically-dispersed cobalt ions on polyphenol-derived nanocarbon layers to improve charge separation, hole storage, and catalytic activity of water-oxidation photoanodes. J Mater Chem A 2021;9:13874-82.
74. Rombach FM, Haque SA, Macdonald TJ. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ Sci 2021;14:5161-90.
75. Gao B, Wang T, Li Y, et al. Boosting the stability and photoelectrochemical activity of a BiVO4 photoanode through a bifunctional polymer coating. J Mater Chem A 2021;9:3309-13.
76. Gu X, Chen Z, Li Y, et al. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl Mater Interfaces 2021;13:24814-23.
77. Li F, Liu Y, Mao B, et al. Carbon-dots-mediated highly efficient hole transfer in I-III-VI quantum dots for photocatalytic hydrogen production. Appl Catalysis B Environ 2021;292:120154.
78. Liu Y, Zhou X, Shen C, et al. Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H2 evolution over g-C3N4 anchored with ferrocene-based hole relay. Catal Sci Technol 2018;8:2853-9.
79. Olshansky JH, Balan AD, Ding TX, Fu X, Lee YV, Alivisatos AP. Temperature-dependent hole transfer from photoexcited quantum dots to molecular species: evidence for trap-mediated transfer. ACS Nano 2017;11:8346-55.
80. Niu F, Zhou Q, Liu R, Hu K. Photoinduced hole hopping across CdS quantum dot surfaces for photoelectrochemical water oxidation. ACS Appl Energy Mater 2022;5:1244-51.
81. Niu F, Zhou Q, Han Y, et al. Rapid hole extraction based on cascade band alignment boosts photoelectrochemical water oxidation efficiency. ACS Catal 2022;12:10028-38.
82. Wu K, Du Y, Tang H, Chen Z, Lian T. Efficient extraction of trapped holes from colloidal CdS nanorods. J Am Chem Soc 2015;137:10224-30.
83. Li XB, Liu B, Wen M, et al. Hole-accepting-ligand-modified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy. Adv Sci 2016;3:1500282.
84. Forster M, Cheung DWF, Gardner AM, Cowan AJ. Potential and pitfalls: on the use of transient absorption spectroscopy for in situ and operando studies of photoelectrodes. J Chem Phys 2020;153:150901.
85. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys Chem Chem Phys 2007;9:1453-60.
86. Lian Z, Sakamoto M, Kobayashi Y, et al. Anomalous photoinduced hole transport in type I core/mesoporous-shell nanocrystals for efficient photocatalytic H2 evolution. ACS Nano 2019;13:8356-63.
87. Andrews JL, Cho J, Wangoh L, et al. Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide. J Am Chem Soc 2018;140:17163-74.
88. Taheri MM, Elbert KC, Yang S, et al. Distinguishing electron and hole dynamics in functionalized CdSe/CdS core/shell quantum dots using complementary ultrafast spectroscopies and kinetic modeling. J Phys Chem C 2021;125:31-41.
89. Yu S, Fan XB, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun 2018;9:4009.
90. Fan XB, Yu S, Wang X, et al. Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration. Adv Mater 2019;31:e1804872.
91. Bredar ARC, Chown AL, Burton AR, Farnum BH. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl Energy Mater 2020;3:66-98.
92. Gimenez S, Dunn HK, Rodenas P, et al. Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. J Electroanal Chem 2012;668:119-25.
93. Cui J, Daboczi M, Regue M, et al. 2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen-evolution photoanodes. Adv Funct Mater 2022:2207136-48.
94. Abbas MA, Bang JH. Anomalous transition of hole transfer pathways in gold nanocluster-sensitized TiO2 photoelectrodes. ACS Energy Lett 2020;5:3718-24.
95. Kolay A, Kokal RK, Kalluri A, et al. New antimony selenide/nickel oxide photocathode boosts the efficiency of graphene quantum-dot co-sensitized solar cells. ACS Appl Mater Interfaces 2017;9:34915-26.
96. Wijayantha KG, Saremi-Yarahmadi S, Peter LM. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys 2011;13:5264-70.
97. Cummings CY, Marken F, Peter LM, Wijayantha KG, Tahir AA. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J Am Chem Soc 2012;134:1228-34.
98. Peter LM, Wong LH, Abdi FF. Revealing the influence of doping and surface treatment on the surface carrier dynamics in hematite nanorod photoanodes. ACS Appl Mater Interfaces 2017;9:41265-72.
99. Zheng H, Lu Y, Ye KH, et al. Atomically thin photoanode of InSe/graphene heterostructure. Nat Commun 2021;12:91.
100. Bard AJ, Faulkner LR. Scanning electrochemical microscopy, 2nd ed.; New York: Marcel Dekker. 2001.
101. Liu N, Qin Y, Han M, et al. Investigation of regeneration kinetics of a carbon-dot-sensitized metal oxide semiconductor with scanning electrochemical microscopy. ACS Appl Energy Mater 2018;1:1483-8.
102. Yu Z, Huang Q, Jiang X, et al. Effect of a cocatalyst on a photoanode in water splitting: a study of scanning electrochemical microscopy. Anal Chem 2021;93:12221-9.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.