REFERENCES

1. Scott V, Haszeldine RS, Tett SFB, Oschlies A. Fossil fuels in a trillion tonne world. Nat Clim Chang 2015;5:419-23.

2. Mohr S, Wang J, Ellem G, Ward J, Giurco D. Projection of world fossil fuels by country. Fuel 2015;141:120-35.

3. Abas N, Kalair A, Khan N. Review of fossil fuels and future energy technologies. Futures 2015;69:31-49.

4. Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change - A review. Energy Policy 2013;52:797-809.

5. Armaroli N, Balzani V. The legacy of fossil fuels. Chem Asian J 2011;6:768-84.

6. Berner RA. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 2003;426:323-6.

7. Gustavsson L, Börjesson P, Johansson B, Svenningsson P. Reducing CO2 emissions by substituting biomass for fossil fuels. Energy 1995;20:1097-113.

8. Withagen C. Pollution and exhaustibility of fossil fuels. Resour Energy Econ 1994;16:235-42.

9. Barbir F, Veziroǧlu T, Plass H. Environmental damage due to fossil fuels use. Int J Hydrog Energy 1990;15:739-49.

10. Hameer S, van Niekerk JL. A review of large-scale electrical energy storage: this paper gives a broad overview of the plethora of energy storage. Int J Energy Res 2015;39:1179-95.

11. Castillo A, Gayme DF. Grid-scale energy storage applications in renewable energy integration: a survey. Energy Convers Manag 2014;87:885-94.

12. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 2011;4:3243.

13. Hosaka T, Kubota K, Hameed AS, Komaba S. Research development on K-ion batteries. Chem Rev 2020;120:6358-466.

14. Kim H, Kim JC, Bianchini M, Seo D, Rodriguez-garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater 2018;8:1702384.

15. Hwang J, Myung S, Sun Y. Recent progress in rechargeable potassium batteries. Adv Funct Mater 2018;28:1802938.

16. Anoopkumar V, John B, Mercy T. Potassium-ion batteries: key to future large-scale energy storage? ACS Appl Energy Mater 2020;3:9478-92.

17. Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 2019;5:eaav7412.

18. Li W, Bi Z, Zhang W, et al. Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. J Mater Chem A 2021;9:8221-47.

19. Zhang X, Wei Z, Dinh KN, et al. Layered oxide cathode for potassium-ion battery: recent progress and prospective. Small 2020;16:e2002700.

20. Eftekhari A. Potassium secondary cell based on Prussian blue cathode. J Power Sources 2004;126:221-8.

21. Li L, Hu Z, Liu Q, Wang J, Guo Z, Liu H. Cathode materials for high-performance potassium-ion batteries. Cell Rep Phys Sci 2021;2:100657.

22. Li L, Hu Z, Lu Y, et al. A low-strain potassium-rich prussian blue analogue cathode for high power potassium-ion batteries. Angew Chem Int Ed 2021;60:13050-6.

23. Qin M, Ren W, Meng J, et al. Realizing superior prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain Chem Eng 2019;7:11564-70.

24. Liu S, Kang L, Jun SC. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv Mater 2021;33:e2004689.

25. Yang Y, Zhou J, Wang L, et al. Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries. Nano Energy 2022;99:107424.

26. Min X, Xiao J, Fang M, et al. Potassium-ion batteries: outlook on present and future technologies. Energy Environ Sci 2021;14:2186-243.

27. Zhang K, Gu Z, Ang EH, et al. Advanced polyanionic electrode materials for potassium-ion batteries: Progresses, challenges and application prospects. Mater Today 2022;54:189-201.

28. Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.

29. Luo W, Wan J, Ozdemir B, et al. Potassium ion batteries with graphitic materials. Nano Lett 2015;15:7671-7.

30. Zhan F, Wang H, He Q, et al. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem Sci 2022;13:11981-2015.

31. Liu S, Kang L, Zhang J, Jung E, Lee S, Jun SC. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Stor Mater 2020;32:167-77.

32. Tu J, Tong H, Zeng X, et al. Modification of porous N-doped carbon with sulfonic acid toward high-ICE/capacity anode material for potassium-ion batteries. Adv Funct Mater 2022;32:2204991.

33. Tian S, Zhang Y, Yang C, Tie S, Nan J. Nitrogen-doped carbon nanosheet coated multilayer graphite as stabilized anode material of potassium-ion batteries with high performances. Electrochim Acta 2021;380:138254.

34. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater 2018;28:1703857.

35. Komaba S, Hasegawa T, Dahbi M, Kubota K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 2015;60:172-5.

36. Cao K, Liu H, Li W, et al. CuO nanoplates for high-performance potassium-ion batteries. Small 2019;15:e1901775.

37. Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A 2017;5:23506-12.

38. Jin H, Wang H, Qi Z, et al. A black phosphorus-graphite composite anode for Li-/Na-/K-ion batteries. Angew Chem Int Ed 2020;59:2318-22.

39. Xiong P, Bai P, Tu S, et al. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 2018;14:e1802140.

40. Wu Y, Hu S, Xu R, et al. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett 2019;19:1351-8.

41. Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018;52:1-10.

42. Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 2017;139:3316-9.

43. Zhang W, Wu Z, Zhang J, et al. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy 2018;53:967-74.

44. Li B, He Z, Zhao J, Liu W, Feng Y, Song J. Advanced Se3P4@C anode with exceptional cycling life for high performance potassium-ion batteries. Small 2020;16:e1906595.

45. Yang Q, Tai Z, Xia Q, et al. Copper phosphide as a promising anode material for potassium-ion batteries. J Mater Chem A 2021;9:8378-85.

46. Xu GL, Chen Z, Zhong GM, et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett 2016;16:3955-65.

47. Yang W, Lu Y, Zhao C, Liu H. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett 2020;16:89-98.

48. Yuan D, Cheng J, Qu G, et al. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J Power Sources 2016;301:131-7.

49. Ramireddy T, Xing T, Rahman MM, et al. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A 2015;3:5572-84.

50. Verma R, Didwal PN, Ki HS, Cao G, Park CJ. SnP3/Carbon nanocomposite as an anode material for potassium-ion batteries. ACS Appl Mater Interfaces 2019;11:26976-84.

51. Zhang Z, Wu C, Chen Z, et al. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J Mater Chem A 2020;8:3369-78.

52. Yang F, Gao H, Hao J, et al. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv Funct Mater 2019;29:1808291.

53. Yang F, Hao J, Long J, et al. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv Energy Mater 2021;11:2003346.

54. Liu Q, Hu Z, Liang Y, et al. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem 2020;132:5197-202.

55. Li D, Zhang Y, Sun Q, et al. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Stor Mater 2019;23:367-74.

56. Zhang W, Pang WK, Sencadas V, Guo Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018;2:1534-47.

57. Huang J, Lin X, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater 2018;8:1703496.

58. Lei K, Wang C, Liu L, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem 2018;130:4777-81.

59. Zhang Q, Mao J, Pang WK, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater 2018;8:1703288.

60. Xie F, Zhang L, Chen B, et al. Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-ion batteries. Matter 2019;1:1681-93.

61. Shen C, Song G, Zhu X, et al. An in-depth study of heteroatom boosted anode for potassium-ion batteries. Nano Energy 2020;78:105294.

62. Chen K, Chong S, Yuan L, Yang Y, Tuan H. Conversion-alloying dual mechanism anode: Nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Stor Mater 2021;39:239-49.

63. Cheng X, Li D, Wu Y, Xu R, Yu Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J Mater Chem A 2019;7:4913-21.

64. Hu X, Liu Y, Chen J, Yi L, Zhan H, Wen Z. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv Energy Mater 2019;9:1901533.

65. Shi X, Zhang J, Yao Q, et al. A self-template approach to synthesize multicore-shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. J Mater Chem A 2020;8:8002-9.

66. Li H, Zhao C, Yin Y, et al. N-doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale 2020;12:4309-13.

67. Hussain N, Liang T, Zhang Q, et al. Ultrathin Bi nanosheets with superior photoluminescence. Small 2017;13:1701349.

68. Zhou, J, Chen, J, Chen, M, et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv Mater 2019;31:e1807874.

69. Hagiwara R, Tamaki K, Kubota K, Goto T, Nohira T. Thermal properties of mixed alkali bis(trifluoromethylsulfonyl)amides. J Chem Eng Data 2008;53:355-8.

70. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

71. Shen C, Cheng T, Liu C, et al. Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J Mater Chem A 2020;8:453-60.

72. Hosaka T, Kubota K, Kojima H, Komaba S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem Commun 2018;54:8387-90.

73. Zhang R, Bao J, Wang Y, Sun CF. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem Sci 2018;9:6193-8.

74. Jiao T, Wu S, Cheng J, et al. Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. J Mater Chem A 2020;8:8440-6.

75. Xiang X, Liu D, Zhu X, et al. Evaporation-induced formation of hollow bismuth@N-doped carbon nanorods for enhanced electrochemical potassium storage. Appl Surf Sci 2020;514:145947.

76. Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater 2019;29:1809195.

77. Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 1977;124:1569-77.

78. McCulloch WD, Ren X, Yu M, Huang Z, Wu Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces 2015;7:26158-66.

79. Liu Y, Xu J, Kang Z, Wang J. Thermodynamic descriptions and phase diagrams for Sb-Na and Sb-K binary systems. Thermochim Acta 2013;569:119-26.

80. Zheng J, Yang Y, Fan X, et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci 2019;12:615-23.

81. Han C, Han K, Wang X, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 2018;10:6820-6.

82. Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018;10:13236-41.

83. Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms. ACS Appl Mater Interfaces 2019;11:27973-81.

84. Liu Y, Tai Z, Zhang J, et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nat Commun 2018;9:3645.

85. Yi Z, Qian Y, Tian J, Shen K, Lin N, Qian Y. Self-templating growth of Sb2Se3@C microtube: a convention-alloying-type anode material for enhanced K-ion batteries. J Mater Chem A 2019;7:12283-91.

86. Huang H, Wang J, Yang X, et al. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew Chem Int Ed 2020;59:14504-10.

87. Liu Q, Fan L, Ma R, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun 2018;54:11773-6.

88. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018;12:12932-40.

89. Wang Z, Dong K, Wang D, et al. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A 2019;7:14309-18.

90. Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed 2019;58:14578-83.

91. Cheng Y, Yao Z, Zhang Q, et al. In situ atomic-scale observation of reversible potassium storage in Sb2S3@Carbon nanowire anodes. Adv Funct Mater 2020;30:2005417.

92. Liu H, He Y, Cao K, et al. Stimulating the reversibility of Sb2S3 Anode for high-performance potassium-ion batteries. Small 2021;17:e2008133.

93. Sheng B, Wang L, Huang H, et al. Boosting potassium storage by integration advantageous of defect engineering and spatial confinement: a case study of Sb2S3. Small 2020;16:e2005272.

94. Wang T, Shen D, Liu H, Chen H, Liu Q, Lu B. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries. ACS Appl Mater Interfaces 2020;12:57907-15.

95. Chen B, Yang L, Bai X, et al. Heterostructure Engineering of Core-Shelled Sb@ Sb2S3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 2021;17:e2006824.

96. He X, Liao J, Wang S, et al. From nanomelting to nanobeads: nanostructured SbxBi1-x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. J Mater Chem A 2019;7:27041-7.

97. Wu J, Zhang Q, Liu S, et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 2020;77:105118.

98. Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 2020;4:2000218.

99. Tian H, Xin F, Wang X, He W, Han W. High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J Materiomics 2015;1:153-69.

100. Yin L, Song J, Yang J, et al. Construction of Ge/C nanospheres composite as highly efficient anode for lithium-ion batteries. J Mater Sci Mater Electron 2021;32:6398-407.

101. Hu Z, Zhang S, Zhang C, Cui G. High performance germanium-based anode materials. Coord Chem Rev 2016;326:34-85.

102. Jung H, Allan PK, Hu Y, et al. Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries. Chem Mater 2015;27:1031-41.

103. Loaiza LC, Monconduit L, Seznec V. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism. Small 2020;16:e1905260.

104. Wen N, Chen S, Feng J, et al. In situ hydrothermal synthesis of double-carbon enhanced novel cobalt germanium hydroxide composites as promising anode material for sodium ion batteries. Dalton Trans 2021;50:4288-99.

105. Zeng T, He H, Guan H, Yuan R, Liu X, Zhang C. Tunable hollow nanoreactors for in situ synthesis of GeP electrodes towards high-performance sodium ion batteries. Angew Chem Int Ed 2021;60:12103-8.

106. Liu R, Luo F, Zeng L, et al. Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion batteries. J Colloid Interface Sci 2021;584:372-81.

107. Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun 2019;101:68-72.

108. He C, Zhang JH, Zhang WX, Li TT. GeSe/BP van der waals heterostructures as promising anode materials for potassium-ion batteries. J Phys Chem C 2019;123:5157-63.

109. Zhou Y, Zhao M, Chen ZW, Shi XM, Jiang Q. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys Chem Chem Phys 2018;20:30290-6.

110. Hao J, Wang Y, Guo Q, Zhao J, Li Y. Structural strategies for germanium-based anode materials to enhance lithium storage. Part Part Syst Charact 2019;36:1900248.

111. Balogun M, Yang H, Luo Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy Environ Sci 2018;11:1859-69.

112. Mo R, Rooney D, Sun K, Yang HY. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat Commun 2017;8:13949.

113. Seo M, Park M, Lee KT, Kim K, Kim J, Cho J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ Sci 2011;4:425-8.

114. Li D, Feng C, Liu HK, Guo Z. Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries. J Mater Chem A 2015;3:978-81.

115. Kim D, Park C. Co-Ge compounds and their electrochemical performance as high-performance Li-ion battery anodes. Mater Today Energy 2020;18:100530.

116. Zhao Z, Ma W, Wang Y, Lv Y, Ma C, Liu X. Boosting the electrochemical performance of nanoporous CuGe anode by regulating the porous structure and solid electrolyte interface layer through Ni-doping. Appl Surf Sci 2021;558:149868.

117. Bensalah N, Matalkeh M, Mustafa NK, Merabet H. Binary Si-Ge Alloys as high-capacity anodes for Li-ion batteries. Phys Status Solidi A 2020;217:1900414.

118. Doherty J, McNulty D, Biswas S, et al. Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries. Nanotechnology 2020;31:165402.

119. Rodriguez JR, Qi Z, Wang H, et al. Ge2Sb2Se5 glass as high-capacity promising lithium-ion battery anode. Nano Energy 2020;68:104326.

120. Kim WS, Vo TN, Kim IT. GeTe-TiC-C composite anodes for Li-ion storage. Materials 2020;13:4222.

121. Zhou X, Li T, Cui Y, et al. In situ and operando morphology study of germanium-selenium alloy anode for lithium-ion batteries. ACS Appl Energy Mater 2020;3:6115-20.

122. Lee G, Jun Choi Y, Hwan Kim Y, et al. Amorphization of germanium selenide driven by chemical interaction with carbon and realization of reversible conversion-alloying reaction for superior K-ion storage. Chem Eng J 2022;430:132995.

123. Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun 2016;52:9279-82.

124. Wang Q, Zhao X, Ni C, et al. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C 2017;121:12652-7.

125. Ramireddy T, Kali R, Jangid MK, Srihari V, Poswal HK, Mukhopadhyay A. Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc 2017;164:A2360-7.

126. Qin G, Liu Y, Han P, Wang L, Liu F, Ma J. Self-regulating organic polymer coupled with enlarged inorganic SnS2 interlamellar composite for potassium ion batteries. Adv Funct Mater 2020;30:2005080.

127. Hu R, Fang Y, Liu X, et al. Synthesis of SnS2 ultrathin nanosheets as anode materials for potassium ion batteries. Chem Res Chin Univ 2021;37:311-7.

128. Verma R, Didwal PN, Nguyen A, Park C. SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chem Eng J 2021;421:129988.

129. Lakshmi V, Chen Y, Mikhaylov AA, et al. Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem Commun 2017;53:8272-5.

130. Cao L, Luo B, Xu B, et al. Stabilizing intermediate phases via efficient entrapment effects of layered VS4/SnS@C heterostructure for ultralong lifespan potassium-ion batteries. Adv Funct Mater 2021;31:2103802.

131. Sun H, Zhang Y, Xu X, et al. Strongly coupled Te-SnS2/MXene superstructure with self-autoadjustable function for fast and stable potassium ion storage. J Energy Chem 2021;61:416-24.

132. Cao Y, Chen H, Shen Y, et al. SnS2 Nanosheets anchored on nitrogen and sulfur Co-doped MXene sheets for high-performance potassium-ion batteries. ACS Appl Mater Interfaces 2021;13:17668-76.

133. Zhou S, Lan J, Song K, Zhang Z, Shi J, Chen W. SnS/SnS2/rGO heterostructure with fast kinetics enables compact sodium ion storage. FlatChem 2021;28:100259.

134. Sun Q, Li D, Dai L, Liang Z, Ci L. Structural engineering of SnS2 encapsulated in carbon nanoboxes for high-performance sodium/potassium-ion batteries anodes. Small 2020;16:e2005023.

135. Wen S, Gu X, Ding X, et al. Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering. Nano Res 2022;15:2083-91.

136. Sheng C, Yu F, Li C, et al. Diagnosing the SEI layer in a potassium ion battery using distribution of relaxation time. J Phys Chem Lett 2021;12:2064-71.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/