1. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-8.
2. Peng L, Zhang Z, Qiu C. Carbon nanotube digital electronics. Nat Electron 2019;2:499-505.
3. Saito R, Nugraha ART, Hasdeo EH, Hung NT, Izumida W. Electronic and optical properties of single wall carbon nanotubes. Top Curr Chem 2017;375:7.
4. Yi C, Chen X, Gou F, et al. Direct measurements of the mechanical strength of carbon nanotube - aluminum interfaces. Carbon 2017;125:93-102.
5. Zhou K, Xu N, Xie G. Thermal conductivity of carbon nanotube superlattices: comparative study with defective carbon nanotubes. Chin Phys B 2018;27:026501.
6. Wan H, Cao Y, Lo LW, Zhao J, Sepúlveda N, Wang C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020;14:10402-12.
7. Zang M. Band theory of single-walled carbon nanotubes. IEEE Trans Nanotechnol 2005;4:452-9.
8. Desai SB, Madhvapathy SR, Sachid AB, et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016;354:99-102.
9. Srimani T, Ding J, Yu A, et al. Comprehensive study on high purity semiconducting carbon nanotube extraction. Adv Electron Mater 2022;8:2101377.
10. Dekker C. How we made the carbon nanotube transistor. Nat Electron 2018;1:518-518.
11. Clément P, Xu X, Stoppiello CT, et al. Direct synthesis of multiplexed metal-nanowire-based devices by using carbon nanotubes as vector templates. Angew Chem Int Ed 2019;58:9928-32.
12. Zhao C, Zhou X, Xie S, et al. DFT study of electronic structure and properties of N, Si and Pd-doped carbon nanotubes. Ceram Int 2018;44:21027-33.
13. Ajayan PM, lijima S. Capillarity-induced filling of carbon nanotubes. Nature 1993;361:333-4.
14. Giménez-López Mdel C, Moro F, La Torre A, et al. Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2011;2:407.
15. Haft M, Grönke M, Gellesch M, et al. Tailored nanoparticles and wires of Sn, Ge and Pb inside carbon nanotubes. Carbon 2016;101:352-60.
16. Talyzin AV, Anoshkin IV, Krasheninnikov AV, et al. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett 2011;11:4352-6.
17. Kharlamova MV, Kramberger C, Saito T, Pichler T. Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes. Fuller Nanotub Carbon Nanostruct 2020;28:20-6.
18. Vasylenko A, Marks S, Wynn JM, et al. Electronic structure control of sub-nanometer 1D SnTe via Nanostructuring within single-walled carbon nanotubes. ACS Nano 2018;12:6023-31.
19. Koizumi R, Hart AH, Brunetto G, et al. Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon 2016;110:27-33.
20. Pan X, Bao X. The effects of confinement inside carbon nanotubes on catalysis. ACC Chem Res 2011;44:553-62.
21. Nieto-Ortega B, Villalva J, Vera-Hidalgo M, Ruiz-González L, Burzurí E, Pérez EM. Band-gap opening in metallic single-walled carbon nanotubes by encapsulation of an organic salt. Angew Chem Int Ed 2017;56:12240-4.
22. Ivanov VG, Kalashnyk N, Sloan J, Faulques E. Vibrational dynamics of extreme 2 × 2 and 3 × 3 potassium iodide nanowires encapsulated in single-walled carbon nanotubes. Phys Rev B 2018;98:125429.
23. Chiu PW, Gu G, Kim GT, et al. Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Appl Phys Lett 2001;79:3845-7.
24. Chimowa G, Yang L, Lonchambon P, et al. Tailoring of double-walled carbon nanotubes for formaldehyde sensing through encapsulation of selected materials. Phys Status Solidi A 2019;216:1900279.
25. Kato T, Hatakeyama R, Shishido J, Oohara W, Tohji K. P-N junction with donor and acceptor encapsulated single-walled carbon nanotubes. Appl Phys Lett 2009;95:083109.
26. Li Y, Kaneko T, Miyanaga S, Hatakeyama R. Synthesis and property characterization of c(69)n azafullerene encapsulated single-walled carbon nanotubes. ACS Nano 2010;4:3522-6.
27. Poudel YR, Li W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater Today Phys 2018;7:7-34.
28. Eliseev AA, Kharlamova MV, Chernysheva MV, et al. Preparation and properties of single-walled nanotubes filled with inorganic compounds. Russ Chem Rev 2009;78:833-54.
29. Yang Q, Hou P, Bai S, Wang M, Cheng H. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem Phys Lett 2001;345:18-24.
30. Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998;391:59-62.
31. Dujardin E, Ebbesen TW, Hiura H, Tanigaki K. Capillarity and wetting of carbon nanotubes. Science 1994;265:1850-2.
32. Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S. Single crystal metals encapsulated in carbon nanoparticles. Science 1993;259:346-8.
33. Guerret-piécourt C, Bouar YL, Lolseau A, Pascard H. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 1994;372:761-5.
34. Hsu W, Li J, Terrones H, et al. Electrochemical production of low-melting metal nanowires. Chem Phys Lett 1999;301:159-66.
35. Hirahara K, Suenaga K, Bandow S, et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 2000;85:5384-7.
36. Tobias G, Shao L, Salzmann CG, Huh Y, Green ML. Purification and opening of carbon nanotubes using steam. J Phys Chem B 2006;110:22318-22.
37. Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993;362:522-5.
38. Tsang SC, Chen YK, Harris PJF, Green MLH. A simple chemical method of opening and filling carbon nanotubes. Nature 1994;372:159-62.
39. Hernadi K, Siska A, Thiên-nga L, Forró L, Kiricsi I. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion 2001;141-142:203-9.
40. Wiśniewski M, Terzyk AP, Hattori Y, Kaneko K, Okino F, Kruszka B. Hydrothermal opening of multiwall carbon nanotube with H2O2 solution. Chem Phys Lett 2009;482:316-9.
41. Ribeiro H, Schnitzler MC, da Silva WM, Santos AP. Purification of carbon nanotubes produced by the electric arc-discharge method. Surf Interfaces 2021;26:101389.
42. Egemen E, Nirmalakhandan N, Trevizo C. Predicting surface tension of liquid organic solvents. Environ Sci Technol 2000;34:2596-600.
43. Eliseev A, Yashina L, Kharlamova M, Kiselev N. One-dimensional crystals inside single-walled carbon nanotubes: growth, structure and electronic properties. In: Electronic properties of carbon nanotubes. 2011.
44. Sloan J, Kirkland AI, Hutchison JL, Green ML. Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. ACC Chem Res 2002;35:1054-62.
45. Wang D, Saleem MF, Javid M, et al. Formation of Sn filled CNTs nanocomposite: study of their magnetic, dielectric properties and enhanced microwave absorption performance at gigahertz frequencies. Ceram Int 2022;48:21961-71.
46. Fujimori T, Morelos-Gómez A, Zhu Z, et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 2013;4:2162.
47. Belandria E, Millot M, Broto J, et al. Pressure dependence of Raman modes in double wall carbon nanotubes filled with 1D Tellurium. Carbon 2010;48:2566-72.
48. Kitaura R, Nakanishi R, Saito T, Yoshikawa H, Awaga K, Shinohara H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew Chem Int Ed 2009;48:8298-302.
49. Kharlamova MV. Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. J Mater Sci 2014;49:8402-11.
50. Stonemeyer S, Cain JD, Oh S, et al. Stabilization of NbTe3, VTe3 and TiTe3 via nanotube encapsulation. J Am Chem Soc 2021;143:4563-8.
51. Pham T, Oh S, Stetz P, et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 2018;361:263-6.
52. Kharlamova MV, Yashina LV, Lukashin AV. Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 2013;112:297-304.
53. Kashtiban RJ, Patrick CE, Ramasse Q, Walton RI, Sloan J. Picoperovskites: the smallest conceivable isolated halide perovskite structures formed within carbon nanotubes. Adv Mater 2023;35:e2208575.
54. Yu WJ, Liu C, Zhang L, et al. Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv Sci 2016;3:1600113.
55. Calatayud DG, Ge H, Kuganathan N, et al. Encapsulation of cadmium selenide nanocrystals in biocompatible nanotubes: DFT calculations, X-ray diffraction investigations, and confocal fluorescence imaging. Chem Eur 2018;7:144-58.
56. Norman LT, Biskupek J, Rance GA, Stoppiello CT, Kaiser U, Khlobystov AN. Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes. Nano Res 2022;15:1282-7.
57. Popple D, Dogan M, Hoang TV, et al. Charge-induced phase transition in encapsulated HfTe2 nanoribbons. Phys Rev Mater 2023;7:L013001.
58. Wang Z, Zhao K, Li H, et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. J Mater Chem 2011;21:171-80.
59. Carter R, Suyetin M, Lister S, et al. Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 2014;43:7391-9.
60. Wang Z, Li H, Liu Z, et al. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J Am Chem Soc 2010;132:13840-7.
61. Koshino M, Niimi Y, Nakamura E, et al. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nat Chem 2010;2:117-24.
62. Simon F, Kuzmany H, Rauf H, et al. Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem Phys Lett 2004;383:362-7.
63. Shimada T, Ohno Y, Okazaki T, et al. Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect transistors. Phys E Low Dimens Syst Nanostruct 2004;21:1089-92.
64. Luzzi DE, Smith BW, Russo R, et al. Encapsulation of metallofullerenes and metallocenes in carbon nanotubes. In AIP Conference Proceedings; 2001, pp. 622-6.
65. Suenaga K, Hirahara K, Bandow S, et al. Core-level spectroscopy on the valence state of encaged metal in metallofullerene-peapods. In AIP Conference Proceedings; 2001, pp. 256-60.
66. Suenaga K, Taniguchi R, Shimada T, Okazaki T, Shinohara H, Iijima S. Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod. Nano Lett 2003;3:1395-8.
67. Kuzmany H, Pfeiffer R, Simon F. The growth of nanophases in the clean room inside single-wall carbon nanotubes. Synth Met 2005;155:690-3.
68. Zhong R, Tao J, Yang X, et al. Preparation of carbon nanotubes with high filling rate of copper nanoparticles. Microporous Mesoporous Mater 2022;344:112231.
69. Lee J, Kim H, Kahng SJ, et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002;415:1005-8.
70. Botos A, Biskupek J, Chamberlain TW, et al. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J Am Chem Soc 2016;138:8175-83.
71. Béjar L, Mejía AA, Parra C, et al. Analysis of Raman spectroscopy and SEM of carbon nanotubes obtain by CVD. Microsc Microanal 2018;24:1092-3.
72. Caccamo MT, Mavilia G, Magazù S. Thermal investigations on carbon nanotubes by spectroscopic techniques. Appl Sci 2020;10:8159.
73. Banhart F. Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J Mater Sci 2006;41:4505-11.
74. Oxley MP, Lupini AR, Pennycook SJ. Ultra-high resolution electron microscopy. Rep Prog Phys 2017;80:026101.
75. Urban KW, Barthel J, Houben L, et al. Progress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM). Prog Mater Sci 2023;133:101037.
76. Guan L, Suenaga K, Shi Z, Gu Z, Iijima S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett 2007;7:1532-5.
77. Qin J, Liao P, Si M, et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat Electron 2020;3:141-7.
78. Fu C, Oviedo MB, Zhu Y, et al. Confined lithium-sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano 2018;12:9775-84.
79. Corio P, Santos A, Santos P, et al. Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 2004;383:475-80.
80. Zhang J, Guo S, Wei J, et al. High-efficiency encapsulation of Pt nanoparticles into the channel of carbon nanotubes as an enhanced electrocatalyst for methanol oxidation. Chemistry 2013;19:16087-92.
81. Kozhuharova R, Ritschel M, Elefant D, et al. Synthesis and characterization of aligned Fe-filled carbon nanotubes on silicon substrates. J Mater Sci Mater Electron 2003;14:789-91.
82. Yao Y, Chen H, Lian C, et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J Hazard Mater 2016;314:129-39.
83. Gao X, Zhang Y, Chen X, et al. Carbon nanotubes filled with metallic nanowires. Carbon 2004;42:47-52.
84. Shi L, Rohringer P, Suenaga K, et al. Confined linear carbon chains as a route to bulk carbyne. Nat Mater 2016;15:634-9.
85. Lenz K, Narkowicz R, Wagner K, et al. Magnetization dynamics of an individual single-crystalline Fe-filled carbon nanotube. Small 2019;15:e1904315.
86. Aryee D, Seifu D. Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes. J Magn Magn Mater 2017;429:161-5.
87. Xu S, Li P, Lu Y. In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res 2018;11:625-32.
88. Bingham JT, Proudian AP, Vyas S, Zimmerman JD. Understanding fragmentation of organic small molecules in atom probe tomography. J Phys Chem Lett 2021;12:10437-43.
89. Jordan JW, Lowe GA, McSweeney RL, et al. Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv Mater 2019;31:e1904182.
90. Smith BW, Monthioux M, Luzzi DE. Encapsulated C60 in carbon nanotubes. Nature 1998;396:323-4.
91. Botos Á, Khlobystov AN, Botka B, et al. Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys Status Solidi B 2010;247:2743-5.
92. Ashino M, Obergfell D, Haluska M, et al. Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat Nanotechnol 2008;3:337-41.
93. Khlobystov AN, Porfyrakis K, Kanai M, et al. Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew Chem Int Ed 2004;43:1386-9.
94. Morgan DA, Sloan J, Green ML. Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem Commun 2002;20:2442-3.
95. Khlobystov AN, Britz DA, Briggs GA. Molecules in carbon nanotubes. ACC Chem Res 2005;38:901-9.
96. Villalva J, Develioglu A, Montenegro-Pohlhammer N, et al. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat Commun 2021;12:1578.
97. Lee CH, Kang KT, Park KS, et al. The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor. Jpn J Appl Phys 2003;42:5392-4.
98. Friedrichs S, Sloan J, Green MLH, Meyer RR, Kirkland AI, Hutchison JL. Complete characterisation of a Sb2O3/(21,-8)SWNT inclusion composite. Chem Commun 2001;10:929-30.
99. Brown G, Bailey SR, Sloan J, et al. Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem Commun 2001;9:845-6.
100. Eliseev AA, Chernysheva MV, Verbitskii NI, et al. Chemical reactions within single-walled carbon nanotube channels. Chem Mater 2009;21:5001-3.
101. Nagata M, Shukla S, Nakanishi Y, et al. Isolation of single-wired transition-metal monochalcogenides by carbon nanotubes. Nano Lett 2019;19:4845-51.
102. Eliseev A, Yashina L, Brzhezinskaya M, et al. Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 2010;48:2708-21.
103. Eliseev A, Yashina L, Verbitskiy N, et al. Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 2012;50:4021-39.
104. Kharlamova MV, Yashina LV, Volykhov AA, et al. Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 2012;85:34.
105. Li L, Lin T, Doig J, et al. Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: photoluminescence and Raman spectra. Phys Rev B 2006;74:245418.
106. Stoppiello CT, Biskupek J, Li ZY, et al. A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale 2017;9:14385-94.
107. Cain JD, Oh S, Azizi A, et al. Ultranarrow TaS2 nanoribbons. Nano Lett 2021;21:3211-7.
108. Meyer S, Pham T, Oh S, et al. Metal-insulator transition in quasi-one-dimensional HfTe3 in the few-chain limit. Phys Rev B 2019;100:4.
109. Cabana L, Ballesteros B, Batista E, et al. Synthesis of PbI2 single-layered inorganic nanotubes encapsulated within carbon nanotubes. Adv Mater 2014;26:2016-21.
110. Wang L, Sofer Z, Bouša D, et al. Graphane nanostripes. Angew Chem Int Ed 2016;55:13965-9.
111. Fu L, Shang C, Zhou S, Guo Y, Zhao J. Transition metal halide nanowires: a family of one-dimensional multifunctional building blocks. Appl Phys Lett 2022;120:023103.
112. Kharlamova MV. Kinetics, electronic properties of filled carbon nanotubes investigated with spectroscopy for applications. Nanomaterials 2022;13:176.
113. Nonnenmacher M, Wickramasinghe H. Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 1992;42-44:351-4.
114. Kharlamova MV, Eliseev AA, Yashina LV, et al. Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Lett 2010;91:196-200.
115. Kharlamova MV, Brzhezinskay MM, Vinogradov AS, et al. The formation and properties of one-dimensional FeHal2 (Hal = Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes. Nanotechnol Russ 2009;4:634-46.
116. Kharlamova MV, Yashina LV, Lukashin AV. Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J Mater Sci 2013;48:8412-9.
117. Kharlamova MV, Volykhov AA, Yashina LV, Egorov AV, Lukashin AV. Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. J Mater Sci 2015;50:5419-30.
118. Kharlamova MV. Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Appl Phys A 2013;111:725-31.
119. Kharlamova MV. Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process. JETP Lett 2013;98:272-7.
120. Yashina LV, Eliseev AA, Kharlamova MV, et al. Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 2011;115:3578-86.
121. Si R, Fischer CF. Electron affinities of at and its homologous elements Cl, Br, and I. Phys Rev A 2018;98:052504.
122. Jorio A, Saito R. Raman spectroscopy for carbon nanotube applications. J Appl Phys 2021;129:021102.
123. Kharlamova MV, Eliseev AA, Yashina LV, Lukashin AV, Tretyakov YD. Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides. J Phys Conf Ser 2012;345:012034.
124. Kharlamova MV, Yashina LV, Eliseev AA, et al. Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 2012;249:2328-32.
125. Kharlamova MV, Kramberger C, Mittelberger A. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes. Appl Phys A 2017;123:239.
126. Kharlamova MV, Kramberger C, Pichler T. Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride: semiconducting response in SWCNTs filled with CdCl2. Phys Status Solidi B 2016;253:2433-9.
127. Kharlamova MV, Sauer M, Saito T, et al. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 2015;7:1383-91.
128. Nascimento VV, Neves WQ, Alencar RS, et al. Origin of the giant enhanced raman scattering by sulfur chains encapsulated inside single-wall carbon nanotubes. ACS Nano 2021;15:8574-82.
129. Li G, Fu C, Oviedo MB, et al. Giant Raman response to the encapsulation of sulfur in narrow diameter single-walled carbon nanotubes. J Am Chem Soc 2016;138:40-3.
130. Mijit E, Trapananti A, Minicucci M, et al. Development of a high temperature diamond anvil cell for x ray absorption experiments under extreme conditions. Radiat Phys Chem 2020;175:108106.
131. Fedoseeva YV, Orekhov AS, Chekhova GN, et al. Single-walled carbon nanotube reactor for redox transformation of mercury dichloride. ACS Nano 2017;11:8643-9.
132. Gets AV, Krainov VP. Conductivity of single-walled carbon nanotubes. J Exp Theor Phys 2016;123:1084-9.
133. Khosravi M, Badehian HA, Habibinejad M. Optical properties of double walled carbon nanotubes. J Electron Spectros Relat Phenomena 2021;248:147058.
134. Shang Y, Hua C, Xu W, et al. Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett 2016;16:1768-75.
135. Chen C, Song C, Yang J, et al. Intramolecular p-i-n junction photovoltaic device based on selectively doped carbon nanotubes. Nano Energy 2017;32:280-6.
136. Chiba T, Amma Y, Takashiri M. Heat source free water floating carbon nanotube thermoelectric generators. Sci Rep 2021;11:14707.
137. Wang JG, Liu H, Zhang X, Li X, Liu X, Kang F. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 2018;14:e1703950.
138. Bychko IB, Abakumov AA, Lemesh NV, Strizhak PE. Catalytic activity of multiwalled carbon nanotubes in acetylene hydrogenation. ChemCatChem 2017;9:4470-4.
139. Liu J, Lu J, Lin X, et al. The electronic properties of chiral carbon nanotubes. Comput Mater Sci 2017;129:290-4.
140. Li Y, Kaneko T, Kong J, Hatakeyama R. Photoswitching in azafullerene encapsulated single-walled carbon nanotube FET devices. J Am Chem Soc 2009;131:3412-3.
141. Li YF, Hatakeyama R, Shishido J, Kato T, Kaneko T. Air-stable p-n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl Phys Lett 2007;90:173127.
142. Xu L, Hu Y, Zhang H, Jiang H, Li C. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustain Chem Eng 2016;4:4251-5.
143. Yu WJ, Liu C, Hou PX, et al. Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 2015;9:5063-71.
144. Li S, Liu Y, Guo P, Wang C. Self-climbed amorphous carbon nanotubes filled with transition metal oxide nanoparticles for large rate and long lifespan anode materials in lithium ion batteries. ACS Appl Mater Interfaces 2017;9:26818-25.
145. Liu Y, Wu N, Wang Z, Cao H, Liu J. Fe3O4 nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability. New J Chem 2017;41:6241-50.
146. Kim S, Song H, Jeong Y. Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery. Carbon 2017;113:371-8.
147. Landi BJ, Ganter MJ, Cress CD, Dileo RA, Raffaelle RP. Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2009;2:638.
148. Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater 2015;14:271-9.
149. Kodama T, Ohnishi M, Park W, et al. Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat Mater 2017;16:892-7.
150. Fukumaru T, Fujigaya T, Nakashima N. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci Rep 2015;5:7951.
151. Aygün M, Stoppiello CT, Lebedeva MA, et al. Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. J Mater Chem A 2017;5:21467-77.
152. Chamberlain TW, Earley JH, Anderson DP, Khlobystov AN, Bourne RA. Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem Commun 2014;50:5200-2.
153. Che G, Lakshmi BB, Martin CR, Fisher ER. Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 1999;15:750-8.
154. Ellis JE, Star A. Carbon nanotube based gas sensors toward breath analysis. Chempluschem 2016;81:1248-65.
155. Tian R, Wang S, Hu X, et al. Novel approaches for highly selective, room-temperature gas sensors based on atomically dispersed non-precious metals. J Mater Chem A 2020;8:23784-94.
156. Qin M, Li J, Song Y. Toward high sensitivity: perspective on colorimetric photonic crystal sensors. Anal Chem 2022;94:9497-507.
157. Qin Z, Sun X, Zhang H, et al. A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. J Mater Chem A 2020;8:4447-56.
158. Luo C, Jia J, Gong Y, Wang Z, Fu Q, Pan C. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl Mater Interfaces 2017;9:19955-62.
159. liu H, Jiang H, Du F, Zhang D, Li Z, Zhou H. Flexible and degradable paper-based strain sensor with low cost. ACS Sustain Chem Eng 2017;5:10538-43.
160. Kim J, Choi S, Lee J, Chung Y, Byun YT. Gas sensing properties of defect-induced single-walled carbon nanotubes. Sens Actuator A Phys 2016;228:688-92.
161. Quang NH, Van Trinh M, Lee B, Huh J. Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens Actuators B Chem 2006;113:341-6.
162. Nguyen H, Huh J. Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation. Sens Actuators B Chem 2006;117:426-30.
163. Qi P, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 2003;3:347-51.
164. Ramachandran K, Raj Kumar T, Babu KJ, Gnana Kumar G. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci Rep 2016;6:36583.
165. Chimowa G, Tshabalala ZP, Akande AA, et al. Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sens Actuators B Chem 2017;247:11-8.
166. Fedi F, Domanov O, Shiozawa H, et al. Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO2 exposure under ambient conditions. J Mater Chem A 2020;8:9753-9.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.