1. Kumar A, Daw P, Milstein D. Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem Rev 2022;122:385-441.
2. Ganguly S, Paul S, Khurana D, et al. Ternary Ni-Co-Se nanostructure for electrocatalytic oxidative value addition of biomass platform chemicals. ACS Appl Energy Mater 2023;6:5331-41.
3. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294-303.
4. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater 2016;16:16-22.
5. Morais AR, da Costa Lopes AM, Bogel-Łukasik R. Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 2015;115:3-27.
6. Climent MJ, Corma A, Iborra S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem 2011;13:520.
7. Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation strategies for the preparation of high-performance catalysts for urea oxidation reaction and their applications. Small 2023;19:e2301130.
8. Zhao G, Rui K, Dou SX, Sun W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 2018;28:1803291.
9. Wei J, Zhou M, Long A, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett 2018;10:75.
10. Yu W, Gao Y, Chen Z, Zhao Y, Wu Z, Wang L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin J Catal 2021;42:1876-902.
11. Zhu B, Liang Z, Zou R. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020;16:e1906133.
12. Jacobson MZ. Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2009;2:148-73.
13. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 2021;33:e2007100.
14. Qin Y, Cao H, Liu Q, et al. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting. Front Chem Sci Eng 2024;18:6.
15. Liu W, Que W, Yin R, et al. Ferrum-molybdenum dual incorporated cobalt oxides as efficient bifunctional anti-corrosion electrocatalyst for seawater splitting. Appl Catal B Environ 2023;328:122488.
16. Li W, Liu K, Feng S, et al. Well-defined Ni3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis. J Colloid Interface Sci 2024;655:726-35.
17. Ding J, Yang H, Zhang H, et al. Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution in alkaline seawater. Int J Hydrog Energy 2023;53:318-24.
18. Liu W, Niu X, Tang J, et al. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis. Chem Synth 2023;3:44.
19. Guo L, Wang J, Teng X, Liu Y, He X, Chen Z. A novel bimetallic nickel-molybdenum carbide nanowire array for efficient hydrogen evolution. ChemSusChem 2018;11:2717-23.
20. Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci 2018;5:1700464.
21. Ji Y, Yu Z, Yan L, Song W. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Sci Technol 2023;29:100-7.
22. Nicita A, Maggio G, Andaloro A, Squadrito G. Green hydrogen as feedstock: financial analysis of a photovoltaic-powered electrolysis plant. Int J Hydrogen Energ 2020;45:11395-408.
23. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 2015;44:5148-80.
24. Lagadec MF, Grimaud A. Water electrolysers with closed and open electrochemical systems. Nat Mater 2020;19:1140-50.
25. Liu X, Guo R, Ni K, et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv Mater 2020;32:e2001136.
26. Wang C, Lu H, Mao Z, Yan C, Shen G, Wang X. Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis. Adv Funct Mater 2020;30:2000556.
27. Zhou L, Shao M, Zhang C, et al. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Adv Mater 2017;29:1604080.
28. Tao HB, Xu Y, Huang X, et al. A General method to probe oxygen evolution intermediates at operating conditions. Joule 2019;3:1498-509.
29. Huang H, Yu C, Han X, et al. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm-2. Energy Environ Sci 2020;13:4990-9.
30. Lie WH, Yang Y, Yuwono JA, et al. Identification of catalytic activity descriptors for selective 5-hydroxymethyl furfural electrooxidation to 2,5-furandicarboxylic acid. J Mater Chem A 2023;11:5527-39.
31. Mondal B, Karjule N, Singh C, et al. Unraveling the mechanisms of electrocatalytic oxygenation and dehydrogenation of organic molecules to value-added chemicals over a Ni-Fe oxide catalyst. Adv Energy Mater 2021;11:2101858.
32. Chen Y, Tian B, Cheng Z, et al. Electro-descriptors for the performance prediction of electro-organic synthesis. Angew Chem Int Ed 2021;60:4199-207.
33. Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sust Energ Rev 2018;87:1-21.
34. Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 2018;47:8349-402.
35. Venkata Mohan S, Nikhil GN, Chiranjeevi P, et al. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 2016;215:2-12.
36. Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2020;49:4273-306.
37. Verdeguer P, Merat N, Gaset A. Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. J Mol Catal 1993;85:327-44.
38. Hu L, He A, Liu X, et al. Biocatalytic Transformation of 5-hydroxymethylfurfural into high-value derivatives: recent advances and future aspects. ACS Sustain Chem Eng 2018;6:15915-35.
39. Tong X, Ma Y, Li Y. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A Gen 2010;385:1-13.
40. Payne KAP, Marshall SA, Fisher K, et al. Enzymatic carboxylation of 2-furoic acid yields 2,5-furandicarboxylic acid (FDCA). ACS Catal 2019;9:2854-65.
41. Eerhart AJJE, Faaij APC, Patel MK. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 2012;5:6407.
42. Zhang H, Qi G, Liu W, et al. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution. Inorg Chem Front 2023;10:2423-9.
43. Xu Y, Jia X, Ma J, et al. Efficient synthesis of 2,5-dicyanofuran from biomass-derived 2,5-diformylfuran via an oximation-dehydration strategy. ACS Sustain Chem Eng 2018;6:2888-92.
44. Zhang C, Xu H, Wang Y, et al. Reduction of 4-nitrophenol with nano-gold@graphene composite porous material. China Powder Sci Technol 2023;29:80-93.
45. Yang Y, Mu T. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chem 2021;23:4228-54.
46. Ma C, Fang P, Mei T. Recent advances in C-H functionalization using electrochemical transition metal catalysis. ACS Catal 2018;8:7179-89.
47. Giannakoudakis DA, Colmenares JC, Tsiplakides D, Triantafyllidis KS. Nanoengineered electrodes for biomass-derived 5-hydroxymethylfurfural electrocatalytic oxidation to 2,5-furandicarboxylic acid. ACS Sustain Chem Eng 2021;9:1970-93.
48. Zhou H, Li Z, Ma L, Duan H. Electrocatalytic oxidative upgrading of biomass platform chemicals: from the aspect of reaction mechanism. Chem Commun 2022;58:897-907.
49. Yang M, Meng G, Li H, et al. Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2,5-furandicarboxylic acid and ammonia. J Colloid Interface Sci 2023;652:155-63.
50. Huang X, Song J, Hua M, et al. Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. Green Chem 2020;22:843-9.
51. Wei T, Liu W, Zhang S, Liu Q, Luo J, Liu X. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem Commun 2023;59:442-5.
52. Grabowski G, Lewkowski J, Skowroński R. The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode. Electrochim Acta 1991;36:1995.
53. Liu W, Cui Y, Du X, Zhang Z, Chao Z, Deng Y. High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ Sci 2016;9:467-72.
54. Zhang B, Fu H, Mu T. Hierarchical NiSx/Ni2P nanotube arrays with abundant interfaces for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural. Green Chem 2022;24:877-84.
55. Yang G, Jiao Y, Yan H, et al. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv Mater 2020;32:e2000455.
56. Wang D, Chen C, Wang S. Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci China Chem 2023;66:1052-72.
57. Vuyyuru KR, Strasser P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal Today 2012;195:144-54.
58. Cha HG, Choi KS. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem 2015;7:328-33.
59. Lu Y, Dong CL, Huang YC, et al. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew Chem Int Ed 2020;59:19215-21.
60. Lu Y, Liu T, Dong CL, et al. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv Mater 2021;33:e2007056.
61. Kang MJ, Park H, Jegal J, Hwang SY, Kang YS, Cha HG. Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media. Appl Catal B Environ 2019;242:85-91.
62. Lu Y, Dong C, Huang Y, et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci China Chem 2020;63:980-6.
63. Zhang N, Zou Y, Tao L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew Chem Int Ed 2019;58:15895-903.
64. Wang H, Li C, An J, Zhuang Y, Tao S. Surface reconstruction of NiCoP for enhanced biomass upgrading. J Mater Chem A 2021;9:18421-30.
65. Barwe S, Weidner J, Cychy S, et al. Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural using high-surface-area nickel boride. Angew Chem Int Ed 2018;57:11460-4.
66. You B, Jiang N, Liu X, Sun Y. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew Chem Int Ed 2016;55:9913-7.
67. Holzhäuser FJ, Janke T, Öztas F, Broicher C, Palkovits R. Electrocatalytic oxidation of 5-hydroxymethylfurfural into the monomer 2,5-furandicarboxylic acid using mesostructured nickel oxide. Adv Sustain Syst 2020;4:1900151.
68. Guo M, Lu X, Xiong J, Zhang R, Li X, et al. Alloy-driven efficient electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural towards 2,5-furandicarboxylic acid: a review. ChemSusChem 2022;17:e202201074.
69. Zhao Y, Cai M, Xian J, Sun Y, Li G. Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. J Mater Chem A 2021;9:20164-83.
70. Sun Y, Wang J, Qi Y, Li W, Wang C. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: promising for H2 production under industrial-level current density. Adv Sci 2022;9:e2200957.
71. An L, Zhao X, Zhao T, Wang D. Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy Environ Sci 2021;14:2620-38.
72. Li F, Bu Y, Lv Z, et al. Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst. Small 2017;13:40.
73. Zhao Y, Dongfang N, Triana CA, et al. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy Environ Sci 2022;15:727-39.
74. Chen D, Chen Z, Zhang X, et al. Exploring single atom catalysts of transition-metal doped phosphorus carbide monolayer for HER: a first-principles study. J Energy Chem 2021;52:155-62.
75. Fei B, Chen Z, Liu J, et al. Ultrathinning nickel sulfide with modulated electron density for efficient water splitting. Adv Energy Mater 2020;10:2001963.
76. Jin C, Zhai P, Wei Y, et al. Ni(OH)2 templated synthesis of ultrathin Ni3S2 nanosheets as bifunctional electrocatalyst for overall water splitting. Small 2021;17:e2102097.
77. Zhang L, Gao X, Zhu Y, et al. Electrocatalytically inactive copper improves the water adsorption/dissociation on Ni3S2 for accelerated alkaline and neutral hydrogen evolution. Nanoscale 2021;13:2456-64.
78. Cai M, Zhang Y, Zhao Y, Liu Q, Li Y, Li G. Two-dimensional metal-organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF) valorization. J Mater Chem A 2020;8:20386-92.
79. Xie S, Fu H, Chen L, Li Y, Shen K. Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co2P nanoparticles enable efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen production. Sci China Chem 2023;66:2141-52.
80. Li J, Mao X, Gong W, et al. Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution. Nano Res 2023;16:6728-35.
81. Gao P, Chen Z, Gong Y, et al. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv Energy Mater 2020;10:1903780.
82. Liu X, Zhang L, Zheng Y, et al. Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Adv Sci 2019;6:1801898.
83. Liu G, Li J, Fu J, et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv Mater 2019;31:e1806761.
84. Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe-OOH catalysts. ACS Energy Lett 2018;3:1515-20.
85. Sun J, Guo N, Shao Z, et al. A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant. Adv Energy Mater 2018;8:1800980.
86. Ma L, Chen S, Pei Z, et al. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018;12:8597-605.
87. Zhou D, Xiong X, Cai Z, et al. Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2018;2:1800083.
88. Lu Y, Li C, Zhang Y, et al. Engineering of cation and anion vacancies in Co3O4 thin nanosheets by laser irradiation for more advancement of oxygen evolution reaction. Nano Energy 2021;83:105800.
89. He J, Zhou X, Xu P, Sun J. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy 2021;80:105540.
90. Wang H, Zhang J, Tao S. Nickel oxide nanoparticles with oxygen vacancies for boosting biomass-upgrading. Chem Eng J 2022;444:136693.
91. Zhang B, Yang Z, Yan C, Xue Z, Mu T. Operando forming of lattice vacancy defect in ultrathin crumpled NiVW-layered metal hydroxides nanosheets for valorization of biomass. Small 2023;19:e2207236.
92. Qi Y, Wang K, Sun Y, Wang J, Wang C. Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Sustain Chem Eng 2022;10:645-54.
93. Tao L, Wang Y, Zou Y, et al. Charge transfer modulated activity of carbon-based electrocatalysts. Adv Energy Mater 2020;10:1901227.
94. Zhang J, Zhang Q, Feng X. Support and interface effects in water-splitting electrocatalysts. Adv Mater 2019;31:e1808167.
95. Sun X, Yuan K, Zhou J, Yuan C, Liu H, Zhang Y. Au3+ species-induced interfacial activation enhances metal-support interactions for boosting electrocatalytic CO2 reduction to CO. ACS Catal 2022;12:923-34.
96. Pang X, Zhao H, Huang Y, Luo B, Bai H, Fan W. Electrochemically induced NiOOH/Ag+ active species for efficient oxidation of 5-hydroxymethylfurfural. Appl Surf Sci 2023;608:155152.
97. Cheng Z, Xiao Y, Wu W, et al. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021;15:11417-27.
98. Yan C, Huang J, Sun K, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy 2018;3:764-72.
99. Jiang W, Zong X, An L, et al. Consciously constructing heterojunction or direct z-scheme photocatalysts by regulating electron flow direction. ACS Catal 2018;8:2209-17.
100. Ma J, Su J, Lin Z, et al. Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells. Nano Energy 2020;67:104241.
101. Wang F, Yang H, Zhang H, et al. One-pot synthesis enables magnetic coupled Cr2Te3/MnTe/Cr2Te3 integrated heterojunction nanorods. Nano Lett 2021;21:7684-90.
102. Chen S, Qi G, Yin R, et al. Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale 2023;15:19577-85.
103. Xie Y, Sun L, Pan X, Zhou Z, Zhao G. Selective two-electron electrocatalytic conversion of 5-Hydroxymethylfurfural boosting hydrogen production under neutral condition over Co(OH)2-CeO2 catalyst. Appl Catal B Environ 2023;338:123068.
104. Wang H, Zhou Y, Tao S. CoP-CoOOH heterojunction with modulating interfacial electronic structure: a robust biomass-upgrading electrocatalyst. Appl Catal B Environ 2022;315:121588.
105. Guo J, Wang G, Cui S, et al. Enhanced adsorption with hydroxymethyl and aldehyde over the heterophase interface for efficient biomass electrooxidation. Sci China Mater 2023;66:2698-707.
106. Qin Y, Han X, Li Y, et al. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal 2020;10:5973-8.
107. Qin Y, Wang B, Qiu Y, et al. Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction. Chem Commun 2021;57:2752-5.
108. Zhao Z, Guo T, Luo X, et al. Bimetallic sites and coordination effects: electronic structure engineering of NiCo-based sulfide for 5-hydroxymethylfurfural electrooxidation. Catal Sci Technol 2022;12:3817-25.
109. Yan Y, Li K, Zhao J, Cai W, Yang Y, Lee J. Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2,5-diformylfuran. Appl Catal B Environ 2017;207:358-65.
110. Zhang M, Liu Y, Liu B, Chen Z, Xu H, Yan K. Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. ACS Catal 2020;10:5179-89.
111. Gao L, Liu Z, Ma J, et al. NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Appl Catal B Environ 2020;261:118235.
112. Deng X, Kang X, Li M, et al. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core-shell nanoarray electrocatalysts. J Mater Chem A 2020;8:1138-46.
113. Jadhav HS, Roy A, Chung W, Seo JG. Free standing growth of MnCo2O4 nanoflakes as an electrocatalyst for methanol electro-oxidation. New J Chem 2017;41:15058-63.
114. Gao L, Bao Y, Gan S, et al. Hierarchical nickel-cobalt-based transition metal oxide catalysts for the electrochemical conversion of biomass into valuable chemicals. ChemSusChem 2018;11:2547-53.
115. Yuan C, Hui KS, Yin H, et al. Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting. ACS Materials Lett 2021;3:752-80.
116. Feng J, Zheng D, Yin R, et al. A wide-temperature adaptive aqueous zinc-air battery-based on Cu-Co dual metal-nitrogen-carbon/nanoparticle electrocatalysts. Small Struct 2023;4:2200340.
117. Zhang G, Wang G, Wan Y, Liu X, Chu K. Ampere-level nitrate electroreduction to ammonia over monodispersed Bi-Doped FeS2. ACS Nano 2023;17:21328-36.
118. Le T, Vo T, Chiang C. Highly efficient amorphous binary cobalt-cerium metal oxides for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. J Catal 2021;404:560-9.
119. Liu W, Dang L, Xu Z, Yu H, Jin S, Huber GW. Electrochemical Oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal 2018;8:5533-41.
120. Yang M, Wei T, He J, et al. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Res 2024;17:1209-16.
121. Lu Z, Yang H, Liu Q, et al. Nb2 AlC MAX nanosheets supported Ru nanocrystals as efficient catalysts for boosting pH-universal hydrogen production. Small 2023:e2305434.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.