1. Ryu B, Wang L, Pu H, Chan MKY, Chen J. Understanding, discovery, and synthesis of 2D materials enabled by machine learning. Chem Soc Rev 2022;51:1899-925.
2. Qiu HJ, Ito Y, Cong W, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 2015;54:14031-5.
3. Zhang Y, Ugeda MM, Jin C, et al. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett 2016;16:2485-91.
4. Jia Y, Zhang L, Gao G, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv Mater 2017;29:1700017.
5. Gogotsi Y, Huang Q. MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 2021;15:5775-80.
6. Jiang Z, Wang P, Jiang X, Zhao J. MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz 2018;3:335-41.
7. Feng S, Miao N, Wang J. Hexagonal MBene (Hf2BO2): a promising platform for the electrocatalysis of hydrogen evolution reaction. ACS Appl Mater Interfaces 2021;13:56131-9.
8. Li Y, Li L, Huang R, Wen Y. Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction. Nanoscale 2021;13:15002-9.
9. Michałowski PP, Anayee M, Mathis TS, et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat Nanotechnol 2022;17:1192-7.
10. Zhou S, Yang X, Pei W, Jiang Z, Zhao J. MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. J Phys Energy 2021;3:012002.
11. Bhat A, Anwer S, Bhat KS, Mohideen MIH, Liao K, Qurashi A. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D Mater Appl 2021;5:1-21.
12. Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem 2022;6:389-404.
13. Pang J, Chang B, Liu H, Zhou W. Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett 2022;7:78-96.
14. Shukla V. The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater Adv 2020;1:3104-21.
15. Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano 2019;13:8491-4.
16. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.
17. Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C 2017;5:2488-503.
18. Wang H, Wu Y, Yuan X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv Mater 2018;30:e1704561.
19. Yu XF, Li YC, Cheng JB, et al. Monolayer Ti2CO2: a promising candidate for NH₃ sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 2015;7:13707-13.
20. Fu Z, Wang N, Legut D, et al. Rational design of flexible two-dimensional mxenes with multiple functionalities. Chem Rev 2019;119:11980-2031.
21. Anand R, Ram B, Umer M, et al. Doped MXene combinations as highly efficient bifunctional and multifunctional catalysts for water splitting and metal-air batteries. J Mater Chem A 2022;10:22500-11.
22. Zhang B, Zhou J, Sun Z. MBenes: progress, challenges and future. J Mater Chem A 2022;10:15865-80.
23. Zhu H, Liang Z, Xue S, et al. DFT practice in MXene-based materials for electrocatalysis and energy storage: from basics to applications. Ceram Int 2022;48:27217-39.
24. Yang X, Shang C, Zhou S, Zhao J. MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horiz 2020;5:1106-15.
25. Wang J, Liu W, Luo G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ Sci 2018;11:3375-9.
26. Zhang T, Zhang B, Peng Q, Zhou J, Sun Z. Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J Mater Chem A 2021;9:433-41.
27. Khazaei M, Wang J, Estili M, et al. Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale 2019;11:11305-14.
28. Zhang H, Xiang H, Dai F, Zhang Z, Zhou Y. First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. J Mater Sci Technol 2018;34:2022-6.
29. Alameda LT, Moradifar P, Metzger ZP, Alem N, Schaak RE. Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J Am Chem Soc 2018;140:8833-40.
30. Ma F, Jiao Y, Wu W, Liu Y, Yang SA, Heine T. Half-auxeticity and anisotropic transport in Pd decorated two-dimensional boron sheets. Nano Lett 2021;21:2356-62.
31. Gao Z, Wang Q, Wu W, et al. Monolayer RhB4: half-auxeticity and almost ideal spin-orbit Dirac point semimetal. Phys Rev B 2021;104:245423.
32. Jiao Y, Ma F, Zhang X, Heine T. A perfect match between borophene and aluminium in the AlB3 heterostructure with covalent Al-B bonds, multiple Dirac points and a high Fermi velocity. Chem Sci 2022;13:1016-22.
33. Gao Z, Ma F, Wu H, et al. Two-dimensional ruthenium boride: a Dirac nodal loop quantum electrocatalyst for efficient hydrogen evolution reaction. J Mater Chem A 2023;11:3717-24.
34. Xiao Y, Li Y, Guo Z, et al. Functionalized Mo2B2 MBenes: promising anchoring and electrocatalysis materials for lithium-sulfur battery. Appl Surf Sci 2021;566:150634.
35. Zhou S, Yang X, Pei W, Jiang Z, Zhao J. MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. J Phys Energy 2021;3:012002.
36. Zhou J, Palisaitis J, Halim J, et al. Boridene: two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation. Science 2021;373:801-5.
37. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996;54:11169-86.
38. Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50:17953-79.
39. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.
40. Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2 -type SiO2 at high pressures. Phys Rev B 2008;78:134106.
41. Martyna GJ, Klein ML, Tuckerman M. Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 1992;97:2635-43.
42. Noerskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. ChemInform 2005;36:chin.200524023.
43. Conway BE, Bockris JOM. The adsorption of hydrogen and the mechanism of the electrolytic hydrogen evolution reaction. Naturwissenschaften 1956;43:446.
44. Parsons R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 1958;54:1053.
45. Schwartz J, Aloni S, Ogletree DF, Schenkel T. Effects of low-energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond. New J Phys 2012;14:043024.
46. Tong B, Meng G, Deng Z, Horprathum M, Klamchuen A, Fang X. Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment for enhancing VOCs sensing performances. Chem Commun 2019;55:11691-4.
47. Lin Z, Carvalho BR, Kahn E, et al. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater 2016;3:022002.
48. Wu H, Gao Z, Ma F, et al. Surface functionalization of two-dimensional boridene family: enhanced stability, tunable electronic property, and high catalytic activity. Appl Surf Sci 2022;602:154374.
49. Zhang H, Li Y, Hou J, Du A, Chen Z. Dirac state in the FeB2 monolayer with graphene-like boron sheet. Nano Lett 2016;16:6124-9.
50. Tang C, Ostrikov KK, Sanvito S, Du A. Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer. Nanoscale Horiz 2021;6:43-8.
51. Zhang H, Li Y, Hou J, Tu K, Chen Z. FeB6 monolayers: the graphene-like material with hypercoordinate transition metal. J Am Chem Soc 2016;138:5644-51.
52. Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 2009;102:236804.
53. Molina-sánchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2. Phys Rev B 2011;84:155413.
54. Yang LM, Bačić V, Popov IA, et al. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J Am Chem Soc 2015;137:2757-62.
55. Sun Y, Zhuo Z, Wu X, Yang J. Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio. Nano Lett 2017;17:2771-7.
56. Wu X, Dai J, Zhao Y, Zhuo Z, Yang J, Zeng XC. Two-dimensional boron monolayer sheets. ACS Nano 2012;6:7443-53.
57. Wu Z, Zhao E, Xiang H, Hao X, Liu X, Meng J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 2007;76:054115.
58. Wang L, Kutana A, Zou X, Yakobson BI. Electro-mechanical anisotropy of phosphorene. Nanoscale 2015;7:9746-51.
59. Wang Y, Li F, Li Y, Chen Z. Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio. Nat Commun 2016;7:11488.
60. Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011;5:9703-9.
61. Li J, Medhekar NV, Shenoy VB. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J Phys Chem C 2013;117:15842-8.
62. Mannix AJ, Zhou XF, Kiraly B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 2015;350:1513-6.
63. Gao G, O’mullane AP, Du A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 2017;7:494-500.
64. Volmer F, Ersfeld M, Faria Junior PE, et al. Twist angle dependent interlayer transfer of valley polarization from excitons to free charge carriers in WSe2/MoSe2 heterobilayers. npj 2D Mater Appl 2023;7:58.
65. Kaneti YV, Benu DP, Xu X, Yuliarto B, Yamauchi Y, Golberg D. Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications. Chem Rev 2022;122:1000-51.
66. Zhou S, Yang X, Pei W, Liu N, Zhao J. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 2018;10:10876-83.
67. Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST, Bolotin KI. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 2013;13:3626-30.
68. Xu X, Liang T, Kong D, Wang B, Zhi L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater Today Nano 2021;14:100111.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.