1. Helveston JP, He G, Davidson MR. Quantifying the cost savings of global solar photovoltaic supply chains. Nature 2022;612:83-7.
2. Russo G. Renewable energy: wind power tests the waters. Nature 2014;513:478-80.
3. Aziz MJ, Gayme DF, Johnson K, et al. A co-design framework for wind energy integrated with storage. Joule 2022;6:1995-2015.
4. Almora O, Baran D, Bazan GC, et al. Device performance of emerging photovoltaic materials (version 1). Adv Energy Mater 2021;11:2002774.
5. Zhang C, Wang H, Yu H, et al. Single-atom catalysts for hydrogen generation: rational design, recent advances, and perspectives. Adv Energy Mater 2022;12:e2200875.
6. van Cresce A, Xu K. Aqueous lithium-ion batteries. Carbon Energy 2021;3:721-51.
7. Lopes PP, Stamenkovic VR. Past, present, and future of lead-acid batteries. Science 2020;369:923-4.
8. Kim J, Lee E, Kim H, Johnson C, Cho J, Kim Y. Rechargeable seawater battery and its electrochemical mechanism. ChemElectroChem 2015;2:328-32.
9. Kim Y, Lee W. Secondary seawater batteries. In: Seawater batteries. Green Energy and Technology. Singapore: Springer; 2022. pp. 91-293.
10. Mozaffari S, Nateghi MR. Recent advances in solar rechargeable seawater batteries based on semiconductor photoelectrodes. Top Curr Chem 2022;380:28.
11. Khan Z, Park SO, Yang J, et al. Binary N,S-doped carbon nanospheres from bio-inspired artificial melanosomes: a route to efficient air electrodes for seawater batteries. J Mater Chem A 2018;6:24459-67.
12. Sun Q, Dai L, Luo T, Wang L, Liang F, Liu S. Recent advances in solid-state metal-air batteries. Carbon Energy 2023;5:e276.
13. Li Y, Lu J. Metal-air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2017;2:1370-7.
14. Rahman MA, Wang X, Wen C. High energy density metal-air batteries: a review. J Electrochem Soc 2013;160:A1759-71.
15. Zhang J, Zhang J, He F, et al. Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nanomicro Lett 2021;13:65.
16. Chen Y, Xu J, He P, et al. Metal-air batteries: progress and perspective. Sci Bull 2022;67:2449-86.
17. Galili N, Shemesh A, Yam R, et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 2019;365:469-73.
18. Gayen P, Saha S, Ramani V. Pyrochlores for advanced oxygen electrocatalysis. ACC Chem Res 2022;55:2191-200.
19. Lv X, Wei W, Wang H, Huang B, Dai Y. Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: a computational study. Appl Catal B 2019;255:117743.
20. Cui X, Ren P, Ma C, et al. Robust interface Ru Centers for high-performance acidic oxygen evolution. Adv Mater 2020;32:e1908126.
21. Kwon J, Sun S, Choi S, et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Adv Mater 2023;35:e2300091.
22. Cai J, Zhang H, Zhang L, Xiong Y, Ouyang T, Liu ZQ. Hetero-anionic structure activated Co-S bonds promote oxygen electrocatalytic activity for high-efficiency zinc-air batteries. Adv Mater 2023;35:e2303488.
23. Kim C, Min H, Kim J, Moon JH. Boosting electrochemical methane conversion by oxygen evolution reactions on Fe-N-C single atom catalysts. Energy Environ Sci 2023;16:3158-65.
24. Gao FY, Gao MR. Nickel-based anode catalysts for efficient and affordable anion-exchange membrane fuel cells. ACC Chem Res 2023;56:1445-57.
25. Wang L, Snihirova D, Deng M, et al. Sustainable aqueous metal-air batteries: an insight into electrolyte system. Energy Stor Mater 2022;52:573-97.
26. Zhang W, Chang J, Wang G, et al. Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. Energy Environ Sci 2022;15:1573-84.
27. Kim S, Ji S, Yang H, et al. Near surface electric field enhancement: pyridinic-N rich few-layer graphene encapsulating cobalt catalysts as highly active and stable bifunctional ORR/OER catalyst for seawater batteries. Appl Catal B 2022;310:121361.
28. Zhu J, Chi J, Cui T, et al. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Appl Catal B 2023;328:122487.
29. Stamenkovic V, M. Markovic N, Ross P. Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J Electroanal Chem 2001;500:44-51.
30. Liu K, Fu J, Lin Y, et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat Commun 2022;13:2075.
31. An L, Hu Y, Li J, et al. Tailoring oxygen reduction reaction pathway on spinel oxides via surficial geometrical-site occupation modification driven by the oxygen evolution reaction. Adv Mater 2022;34:e2202874.
32. Wang N, Ou P, Hung SF, et al. Strong-proton-adsorption Co-based electrocatalysts achieve active and stable neutral seawater splitting. Adv Mater 2023;35:e2210057.
33. Hwang SM, Park JS, Kim Y, et al. Rechargeable seawater batteries-from concept to applications. Adv Mater 2019;31:e1804936.
34. Blake IC. Fiftieth anniversary: the anniversary issue on primary cell: silver chloride-magnesium reserve battery. J Electrochem Soc 1952;99:202C.
35. Huang Q, Yu K, Yang S, Wen L, Dai Y, Qiao X. Effects of Al and Sn on electrochemical properties of Mg-6%Al-1%Sn (mass fraction) magnesium alloy as anode in 3.5%NaCl solution. J Cent South Univ 2014;21:4409-14.
36. Wang N, Wang R, Peng C, Peng B, Feng Y, Hu C. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery. Electrochim Acta 2014;149:193-205.
37. Abdulrehman T, Yousif Z, Al-ameri S, Abdulkareem I, Abdulla A, Haik Y. Enhancing the performance of Mg-Al brine water batteries using conductive polymer-PEDOT:PSS. Renew Energ 2015;82:125-30.
38. Yu K, Xiong H, Wen L, et al. Discharge behavior and electrochemical properties of Mg-Al-Sn alloy anode for seawater activated battery. T Nonferr Metal Soc 2015;25:1234-40.
39. Yuasa M, Huang X, Suzuki K, Mabuchi M, Chino Y. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries. J Power Sources 2015;297:449-56.
40. Shi Y, Peng C, Feng Y, Wang R, Wang N. Microstructure and electrochemical corrosion behavior of extruded Mg-Al-Pb-La alloy as anode for seawater-activated battery. Mater Des 2017;124:24-33.
41. Shi Y, Peng C, Feng Y, Wang R, Wang N. Enhancement of discharge properties of an extruded Mg-Al-Pb anode for seawater-activated battery by lanthanum addition. J Alloys Compd 2017;721:392-404.
42. Wang L, Wang R, Feng Y, Deng M, Wang N. Effect of heat treatment on electrochemical properties of Mg-9 wt.%Al-2.5 wt.%Pb alloy in sodium chloride solution. JOM 2017;69:2467-70.
43. Xiong H, Li L, Zhang Y, et al. Microstructure and discharge behavior of Mg-Al-Sn-in anode alloys. J Electrochem Soc 2017;164:A1745-54.
44. Wu J, Wang R, Feng Y, Peng C. Effect of hot rolling on the microstructure and discharge properties of Mg-1.6 wt%Hg-2 wt%Ga alloy anodes. J Alloys Compd 2018;765:736-46.
45. Li J, Chen Z, Jing J, Hou J. Electrochemical behavior of Mg-Al-Zn-Ga-In alloy as the anode for seawater-activated battery. J Mater Sci Technol 2020;41:33-42.
46. Wu Z, Zhang H, Zou J, et al. Effect of microstructure on discharge performance of Al-0.8Sn-0.05Ga-0.9Mg-1.0Zn (wt%) alloy as anode for seawater-activated battery. Mater Corros 2020;71:1680-90.
47. Xie Q, Ma A, Jiang J, Liu H, Saleh B. Discharge properties of ECAP processed AZ31-Ca alloys as anodes for seawater-activated battery. J Mater Res Technol 2021;11:1031-44.
48. Huang J, Liu H, Fang H, et al. Effects of intermetallic phases on electrochemical properties of powder metallurgy Mg-6%Al-5%Pb anode alloy used for seawater activated battery. Mater Res Express 2022;9:066504.
49. Zhao C, Liu J, Yao N, et al. Low-temperature working feasibility of zinc-air batteries with noble metal-free electrocatalysts. Renewa 2023;1:73-80.
50. Renuka R. Influence of allotropic modifications of sulphur on the cell voltage in Mg-CuI(S) seawater activated battery. Mater Chem Phys 1999;59:42-8.
51. Senthilkumar ST, Go W, Han J, et al. Emergence of rechargeable seawater batteries. J Mater Chem A 2019;7:22803-25.
52. Prasad K, Venkatakrishnan N, Mathur P. Preliminary report on the performance characteristics of the magnesium-mercurous chloride battery system. J Power Sources 1977;1:371-5.
53. Yu J, Li B, Zhao C, Zhang Q. Seawater electrolyte-based metal-air batteries: from strategies to applications. Energy Environ Sci 2020;13:3253-68.
54. Shinohara M, Araki E, Mochizuki M, Kanazawa T, Suyehiro K. Practical application of a sea-water battery in deep-sea basin and its performance. J Power Sources 2009;187:253-60.
55. Liu Q, Yan Z, Wang E, Wang S, Sun G. A high-specific-energy magnesium/water battery for full-depth ocean application. Int J Hydrog Energy 2017;42:23045-53.
56. Al-eggiely AH, Alguail AA, Gvozdenović MM, Jugović BZ, Grgur BN. Seawater zinc/polypyrrole-air cell possessing multifunctional charge-discharge characteristics. J Solid State Electrochem 2017;21:2769-77.
57. Jiao W, Fan Y, Huang C, Sanglin. Effect of modified polyacrylonitrile-based carbon fiber on the oxygen reduction reactions in seawater batteries. Ionics 2018;24:285-96.
58. Zhang Q, Zhou Y, Dai W, et al. Chloride ion as redox mediator in reducing charge overpotential of aprotic lithium-oxygen batteries. Batteries Supercaps 2021;4:232-9.
59. Kim Y, Kim G, Jeong S, et al. Large-scale stationary energy storage: seawater batteries with high rate and reversible performance. Energy Stor Mater 2019;16:56-64.
60. Kim Y, Kim H, Park S, Seo I, Kim Y. Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries. Electrochim Acta 2016;191:1-7.
61. Kim Y, Shin K, Jung Y, Lee W, Kim Y. Development of prismatic cells for rechargeable seawater batteries. Adv Sustain Syst 2022;6:2100484.
62. Son M, Park S, Kim N, Angeles AT, Kim Y, Cho KH. Simultaneous energy storage and seawater desalination using rechargeable seawater battery: feasibility and future directions. Adv Sci 2021;8:e2101289.
63. Kim Y, Jung J, Yu H, et al. Sodium biphenyl as anolyte for sodium-seawater batteries. Adv Funct Mater 2020;30:2001249.
64. Han J, Hwang SM, Go W, Senthilkumar S, Jeon D, Kim Y. Development of coin-type cell and engineering of its compartments for rechargeable seawater batteries. J Power Sources 2018;374:24-30.
65. Xu Y, Lv H, Lu H, et al. Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy 2022;98:107295.
66. Yu J, Zhao C, Liu J, Li B, Tang C, Zhang Q. Seawater-based electrolyte for zinc-air batteries. Green Chem Eng 2020;1:117-23.
67. Wang C, Yu Y, Niu J, et al. Recent progress of metal-air batteries - a mini review. App Sci 2019;9:2787.
68. Zhang T, Tao Z, Chen J. Magnesium-air batteries: from principle to application. Mater Horiz 2014;1:196-206.
69. Park S, Ligaray M, Kim Y, Chon K, Son M, Cho KH. Investigating the influence of catholyte salinity on seawater battery desalination. Desalination 2021;506:115018.
70. Mamtani K, Jain D, Co AC, Ozkan US. Investigation of chloride poisoning resistance for nitrogen-doped carbon nanostructures as oxygen depolarized cathode catalysts in acidic media. Catal Lett 2017;147:2903-9.
71. Kim Y, Kim J, Vaalma C, et al. Optimized hard carbon derived from starch for rechargeable seawater batteries. Carbon 2018;129:564-71.
72. Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal 2021;4:615-22.
73. Millero FJ, Feistel R, Wright DG, Mcdougall TJ. The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res Part I Oceanogr Res Pap 2008;55:50-72.
74. Kim DH, Choi H, Hwang DY, et al. Reliable seawater battery anode: controlled sodium nucleation via deactivation of the current collector surface. J Mater Chem A 2018;6:19672-80.
75. Liu Q, Pan Z, Wang E, An L, Sun G. Aqueous metal-air batteries: fundamentals and applications. Energy Stor Mater 2020;27:478-505.
76. Kim D, Park J, Lee W, Choi Y, Kim Y. Development of rechargeable seawater battery module. J Electrochem Soc 2022;169:040508.
77. Arnold S, Wang L, Presser V. Dual-Use of seawater batteries for energy storage and water desalination. Small 2022;18:e2107913.
78. Kim K, Hwang SM, Park J, Han J, Kim J, Kim Y. Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode. J Power Sources 2016;313:46-50.
79. Jung J, Hwang DY, Kristanto I, Kwak SK, Kang SJ. Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries. J Mater Chem A 2019;7:9773-81.
80. Lee C, Jeon D, Park J, et al. Tetraruthenium polyoxometalate as an atom-efficient bifunctional oxygen evolution reaction/oxygen reduction reaction catalyst and its application in seawater batteries. ACS Appl Mater Interfaces 2020;12:32689-97.
81. Kim J, Park J, Lee J, Lim W, Jo C, Lee J. Biomass-derived P, N self-doped hard carbon as bifunctional oxygen electrocatalyst and anode material for seawater batteries. Adv Funct Mater 2021;31:2010882.
82. Kim J, Mueller F, Kim H, et al. Rechargeable-hybrid-seawater fuel cell. NPG Asia Mater 2014;6:e144.
83. Manikandan P, Kishor K, Han J, Kim Y. Advanced perspective on the synchronized bifunctional activities of P2-type materials to implement an interconnected voltage profile for seawater batteries. J Mater Chem A 2018;6:11012-21.
84. Kim S, Yang H, Jeong S, et al. Negative surface charge-mediated Fe Quantum dots with N-doped graphene/Ti3C2Tx MXene as chlorine-resistance electrocatalysts for high performance seawater-based Al-air batteries. J Power Sources 2023;566:232923.
85. Le Z, Li W, Dang Q, et al. A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian blue analogue cathode. J Mater Chem A 2021;9:8685-91.
86. Guo Y, Yang M, Xie RC, Compton RG. The oxygen reduction reaction at silver electrodes in high chloride media and the implications for silver nanoparticle toxicity. Chem Sci 2020;12:397-406.
87. Hasvold Ø, Henriksen H, Melv˦r E, et al. Sea-water battery for subsea control systems. J Power Sources 1997;65:253-61.
88. Li J, Wang N, Liu K, Duan J, Hou B. Efficient electrocatalytic H2O2 production in simulated seawater on ZnO/reduced graphene oxide nanocomposite. Colloids Surf A Physicochem Eng Asp 2023;668:131446.
89. Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 2016;116:3594-657.
90. Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 2015;44:2168-201.
91. Ryu JH, Park J, Park J, et al. Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater batteries. Energy Stor Mater 2022;45:281-90.
92. Jin C, Nagaiah TC, Xia W, Bron M, Schuhmann W, Muhler M. Polythiophene-assisted vapor phase synthesis of carbon nanotube-supported rhodium sulfide as oxygen reduction catalyst for HCl electrolysis. ChemSusChem 2011;4:927-30.
93. Chen Y, Matanovic I, Weiler E, Atanassov P, Artyushkova K. Mechanism of oxygen reduction reaction on transition metal-nitrogen-carbon catalysts: establishing the role of nitrogen-containing active sites. ACS Appl Energy Mater 2018;1:5948-53.
94. Gu W, Hu L, Li J, Wang E. Recent advancements in transition metal-nitrogen-carbon catalysts for oxygen reduction reaction. Electroanalysis 2018;30:1217-28.
95. Zhao C, Ren D, Wang J, et al. Regeneration of single-atom catalysts deactivated under acid oxygen reduction reaction conditions. J Energy Chem 2022;73:478-84.
96. Liu M, Li N, Cao S, et al. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv Mater 2022;34:e2107421.
97. Suh DH, Park SK, Nakhanivej P, Kim Y, Hwang SM, Park HS. Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery. J Power Sources 2017;372:31-7.
98. Wu S, Liu X, Mao H, et al. Realizing high-efficient oxygen reduction reaction in alkaline seawater by tailoring defect-rich hierarchical heterogeneous assemblies. Appl Catal B 2023;330:122634.
99. Gao Z, Yang Q, Qiu P, et al. p-type plastic inorganic thermoelectric materials. Adv Energy Mater 2021;11:2100883.
100. Zhan Y, Ding Z, He F, et al. Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte. Chem Eng J 2022;443:136456.
101. Li H, Kelly S, Guevarra D, et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat Catal 2021;4:463-8.
102. Son M, Park J, Im E, et al. Sacrificial catalyst of carbothermal-shock-synthesized 1T-MoS2 layers for ultralong-lifespan seawater battery. Nano Lett 2023;23:344-52.
103. Zhang Y, Park J, Senthilkumar ST, Kim Y. A novel rechargeable hybrid Na-seawater flow battery using bifunctional electrocatalytic carbon sponge as cathode current collector. J Power Sources 2018;400:478-84.
104. Tu NDK, Park SO, Park J, Kim Y, Kwak SK, Kang SJ. Pyridinic-nitrogen-containing carbon cathode: efficient electrocatalyst for seawater batteries. ACS Appl Energy Mater 2020;3:1602-8.
105. Zhang F, Yu L, Wu L, Luo D, Ren Z. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem 2021;3:485-98.
106. Dresp S, Dionigi F, Klingenhof M, Strasser P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett 2019;4:933-42.
107. Vos JG, Wezendonk TA, Jeremiasse AW, Koper MTM. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J Am Chem Soc 2018;140:10270-81.
108. Kim S, Lee T, Han S, Lee C, Kim C, Yoon J. Ir0.11Fe0.25O0.64 as a highly efficient electrode for electrochlorination in dilute chloride solutions. J Ind Eng Chem 2021;102:155-62.
109. Kim Y, Harzandi AM, Lee J, Choi Y, Kim Y. Design of large-scale rectangular cells for rechargeable seawater batteries. Adv Sustain Syst 2021;5:2000106.
110. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys Chem Chem Phys 2010;12:283-90.
111. Komiya H, Shinagawa T, Takanabe K. Electrolyte engineering for oxygen evolution reaction over non-noble metal electrodes achieving high current density in the presence of chloride ion. ChemSusChem 2022;15:e202201088.
112. Zhao X, Wang Y, Shi Y, et al. Exploiting interfacial Cl-/Cl0 redox for a 1.8-V voltage plateau aqueous electrochemical capacitor. ACS Energy Lett 2021;6:1134-40.
113. Vos JG, Liu Z, Speck FD, et al. Selectivity trends between oxygen evolution and chlorine evolution on iridium-based double perovskites in acidic media. ACS Catal 2019;9:8561-74.
114. Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016;9:962-72.
115. You H, Wu D, Si D, et al. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J Am Chem Soc 2022;144:9254-63.
116. Enkhtuvshin E, Kim KM, Kim Y, et al. Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. J Mater Chem A 2021;9:27332-46.
117. Zhang K, Zou R. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 2021;17:e2100129.
118. Ibrahim KB, Tsai M, Chala SA, et al. A review of transition metal-based bifunctional oxygen electrocatalysts. J Chin Chem Soc 2019;66:829-65.
119. Wang J, Zhao C, Liu J, et al. Composing atomic transition metal sites for high-performance bifunctional oxygen electrocatalysis in rechargeable zinc-air batteries. Particuology 2023;77:146-52.
120. Yu L, Zhu Q, Song S, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat Commun 2019;10:5106.
121. Kuang Y, Kenney MJ, Meng Y, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc Natl Acad Sci USA 2019;116:6624-9.
122. Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv Energy Mater 2018;8:1801926.
123. Liu J, Liu X, Shi H, et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl Catal B 2022;302:120862.
124. Song Y, Xu B, Liao T, Guo J, Wu Y, Sun Z. Electronic structure tuning of 2D metal (Hydr)oxides nanosheets for electrocatalysis. Small 2021;17:e2002240.
125. Joo J, Kim T, Lee J, Choi SI, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater 2019;31:e1806682.
126. Dutta A, Pradhan N. Developments of metal phosphides as efficient OER precatalysts. J Phys Chem Lett 2017;8:144-52.
127. Tan L, Yu J, Wang C, et al. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv Funct Mater 2022;32:2200951.
128. Zhang H, Geng S, Ouyang M, Yadegari H, Xie F, Riley DJ. A self-reconstructed bifunctional electrocatalyst of pseudo-amorphous nickel carbide@iron oxide network for seawater splitting. Adv Sci 2022;9:e2200146.
129. Song HJ, Yoon H, Ju B, Lee D, Kim D. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1-xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal 2020;10:702-9.
130. Guo J, Zheng Y, Hu Z, et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat Energy 2023;8:264-72.
131. Kim J, Kim J, Jeong J, et al. Designing fluorine-free electrolytes for stable sodium metal anodes and high-power seawater batteries via SEI reconstruction. Energy Environ Sci 2022;15:4109-18.
132. Bae H, Park J, Senthilkumar S, Hwang SM, Kim Y. Hybrid seawater desalination-carbon capture using modified seawater battery system. J Power Sources 2019;410-11:99-105.
133. Budde-meiwes H, Drillkens J, Lunz B, et al. A review of current automotive battery technology and future prospects. J Aut Eng 2013;227:761-76.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.