1. Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017;29:1601727.
2. Luo H, Zhou X, Ellingford C, et al. Interface design for high energy density polymer nanocomposites. Chem Soc Rev 2019;48:4424-65.
3. Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 2016;116:4260-317.
4. Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.
5. Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121:6124-72.
6. Pan H, Kursumovic A, Lin YH, Nan CW, MacManus-Driscoll JL. Dielectric films for high performance capacitive energy storage: multiscale engineering. Nanoscale 2020;12:19582-91.
7. Wei J, Zhu L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog Polym Sci 2020;106:101254.
8. Tan DQ. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv Funct Mater 2020;30:1808567.
9. Zhang G, Li Q, Allahyarov E, Li Y, Zhu L. Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl Mater Interfaces 2021;13:37939-60.
10. Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015;523:576-9.
11. Zhang X, Li BW, Dong L, et al. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv Mater Interfaces 2018;5:1800096.
12. Hu H, Zhang F, Luo S, Chang W, Yue J, Wang CH. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 2020;74:104844.
13. McPherson JW, Kim J, Shanware A, Mogul H, Rodriguez J. Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE Trans Electron Devices 2003;50:1771.
14. Chen Q, Shen Y, Zhang S, Zhang Q. Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res 2015;45:433-58.
15. Palneedi H, Peddigari M, Hwang GT, Jeong DY, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018;28:1803665.
16. Veerapandiyan V, Benes F, Gindel T, Deluca M. Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review. Materials (Basel) 2020;13:E5742.
17. Yang Z, Du H, Jin L, Poelman D. High-performance lead-free bulk ceramics for energy storage applications: design strategies and challenges. J Mater Chem A Mater 2021;9:18026-85.
18. Pramanick A, Nayak S. Perspective on emerging views on microscopic origin of relaxor behavior. J Mater Res 2021;36:1015-36.
19. Liu Z, Lu T, Ye J, et al. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3:1800111.
20. Li F, Zhang S, Damjanovic D, Chen LQ, Shrout TR. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv Funct Mater 2018;28:1801504.
21. Yao FZ, Yuan Q, Wang Q, Wang H. Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films. Nanoscale 2020;12:17165-84.
22. Pan H, Ma J, Ma J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 2018;9:1813.
23. Li D, Zeng X, Li Z, et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 2021;10:675-703.
24. Zhang H, Wei T, Zhang Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C Mater 2020;8:16648-67.
25. Huang X, Sun B, Zhu Y, Li S, Jiang P. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 2019;100:187-225.
26. Huan TD, Boggs S, Teyssedre G, et al. Advanced polymeric dielectrics for high energy density applications. Prog Mater Sci 2016;83:236-69.
27. Fan B, Zhou M, Zhang C, He D, Bai J. Polymer-based materials for achieving high energy density film capacitors. Prog Polym Sci 2019;97:101143.
28. Jiang Y, Zhou M, Shen Z, et al. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Materials 2021;9:020905.
29. Sun Z, Wang Z, Tian Y, et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv Electron Mater 2020;6:1900698.
30. Dong R, Ranjan V, Nardelli MB, Bernholc J. Atomistic simulations of aromatic polyurea and polyamide for capacitive energy storage. Phys Rev B 2015;92:024203.
31. Zhang Q, Chen X, Zhang B, et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 2021;4:2448-59.
32. Saiz F, Quirke N. The excess electron in polymer nanocomposites. Phys Chem Chem Phys 2018;20:27528-38.
33. Shi N, Ramprasad R. Local properties at interfaces in nanodielectrics: an ab initio computational study. IEEE Trans Dielectr Electr Insul 2008;15:170.
34. Shen ZH, Wang JJ, Jiang JY, et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat Commun 2019;10:1843.
35. Cai Z, Zhu C, Wang X, Li L. Phase-field modeling of the coupled domain structure and dielectric breakdown evolution in a ferroelectric single crystal. Phys Chem Chem Phys 2019;21:16207-12.
36. Wang JJ, Wang B, Chen LQ. Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method. Annu Rev Mater Res 2019;49:127-52.
37. Kim J, Saremi S, Acharya M, et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020;369:81-4.
38. Zhao Y, Ouyang J, Wang K, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Stor Mater 2021;39:81-8.
39. Xie J, Liu H, Yao Z, et al. Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors via amorphous-structure engineering. J Mater Chem C Mater 2019;7:13632-9.
40. Otoničar M, Bradeško A, Fulanović L, et al. Connecting the multiscale structure with macroscopic response of relaxor ferroelectrics. Adv Funct Mater 2020;30:2006823.
41. Yang Z, Gao F, Du H, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 2019;58:768-77.
42. Yuan Q, Li G, Yao FZ, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.
43. Wang G, Li J, Zhang X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ Sci 2019;12:582-8.
44. Zhao P, Cai Z, Chen L, et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy Environ Sci 2020;13:4882-90.
45. Morozovska AN, Eliseev EA, Fomichov YM, et al. Controlling the domain structure of ferroelectric nanoparticles using tunable shells. Acta Mater 2020;183:36-50.
46. Yan F, Bai H, Shi Y, et al. Sandwich structured lead-free ceramics based on Bi0.5Na0.5TiO3 for high energy storage. Chem Eng J 2021;425:130669.
47. Wu L, Cai Z, Zhu C, Feng P, Li L, Wang X. Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: Phase-field simulation and experimental realization. Appl Phys Lett 2020;117:212902.
48. Zhu D, Mangeri J, Wang R, Nakhmanson S. Size, shape, and orientation dependence of the field-induced behavior in ferroelectric nanoparticles. J Appl Phys 2019;125:134102.
49. Wang K, Ouyang J, Wuttig M, et al. Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors. Adv Energy Mater 2020;10:2001778.
50. Kwon O, Seol D, Lee D, et al. Direct probing of polarization charge at nanoscale level. Adv Mater 2018;30:1703675.
51. Dittmer R, Jo W, Rdel J, Kalinin S, Balke N. Nanoscale insight into lead-free BNT-BT-xKNN. Adv Funct Mater 2012;22:4208-15.
52. Wei Y, Wang X, Zhu J, Wang X, Damjanovic D. Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J Am Ceram Soc 2013;96:3163-8.
53. Sharma S, Singh V, Dwivedi RK. Electrical properties of (1-x) BFO-(x) PZT multiferroics synthesized by sol-gel method: transition from relaxor to non-relaxor. J Alloys Compd 2016;682:723-9.
54. Pan H, Zeng Y, Shen Y, et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J Mater Chem A 2017;5:5920-6.
55. Zhou M, Liang R, Zhou Z, Dong X. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 2018;6:8528-37.
56. Wang J, Shi SQ, Chen LQ, Li Y, Zhang TY. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 2004;52:749-64.
57. Wang J, Ma X, Li Q, Britson J, Chen LQ. Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater 2013;61:7591-603.
58. Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578-82.
59. Wang JJ, Su YJ, Wang B, Ouyang J, Ren YH, Chen LQ. Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors. Nano Energy 2020;72:104665.
60. Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett 1996;15:1767-9.
61. Cai Z, Wang X, Hong W, Luo B, Zhao Q, Li L. Grain-size-dependent dielectric properties in nanograin ferroelectrics. J Am Ceram Soc 2018;101:5487-96.
62. O’Dwyer JJ. Theory of dielectric breakdown in solids. J Electrochem Soc 1969;116:239.
63. Chaitanya Pitike K, Hong W. Phase-field model for dielectric breakdown in solids. J Appl Phys 2014;115:044101.
64. Niemeyer L, Pietronero L, Wiesmann HJ. Fractal dimension of dielectric breakdown. Phys Rev Lett 1984;52:1033.
65. Sparks M, Mills D, Warren R, et al. Theory of electron-avalanche breakdown in solids. Phys Rev B 1981;24:3519.
66. Liu M, Cao M, Zeng F, et al. Fine-grained silica-coated barium strontium titanate ceramics with high energy storage. Ceram Int 2018;44:20239-44.
67. Li C, Yao M, Gao W, Yao X. High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer. Ceram Int 2020;46:722-73.
68. Wu L, Wang X, Li L. Enhanced energy density in core-shell ferroelectric ceramics: modeling and practical conclusions. J Am Ceram Soc 2016;99:930-7.
69. Yuan Q, Yao FZ, Cheng SD, et al. Bioinspired hierarchically structured all-inorganic nanocomposites with significantly improved capacitive performance. Adv Funct Mater 2020;30:2000191.
70. Shindo Y, Yoshida M, Narita F, Horiguchi K. Electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators: experiment and finite element simulation. J Mech Phys Solids 2004;52:1109-24.
71. Li F, Jin L, Xu Z, Zhang S. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl Phys Rev 2014;1:011103.
72. Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020;19:999-1005.
73. Lv P, Yang C, Qian J, et al. Flexible lead-free perovskite oxide multilayer film capacitor based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for high-performance dielectric energy storage. Adv Energy Mater 2020;10:1904229.
74. Sun Z, Wang L, Liu M, et al. Interface thickness optimization of lead-free oxide multilayer capacitors for high-performance energy storage. J Mater Chem A 2018;6:1858-64.
75. Wang Y, Chen J, Li Y, Niu Y, Wang Q, Wang H. Multilayered hierarchical polymer composites for high energydensity capacitors. J Mater Chem A 2019;7:2965-80.
76. Sun Z, Ma C, Liu M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater 2017;29:1604427.
77. Fan Q, Liu M, Ma C, et al. Significantly enhanced energy storage density with superior thermal stability by optimizing Ba (Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 2018;51:539-45.
78. Liu Y, Zhang B, Xu W, et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat Mater 2020;19:1169-74.
79. Cheng ZY, Zhang Q, Bateman FB. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly (vinylidene fluoride-trifluoroethylene) copolymers. J Appl Phys 2002;92:6749.
80. Chen X, Tseng JK, Treufeld I, et al. Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films. J Mater Chem C 2017;5:10417-26.
81. Huang Y, Rui G, Li Q, et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly (vinylidene fluoride) with pure β crystals. Nat Commun 2021;12:675.
82. Guo M, Guo C, Han J, et al. Toroidal polar topology in strained ferroelectric polymer. Science 2021;371:1050-6.
83. Meng N, Ren X, Santagiuliana G, et al. Ultrahigh β-phase content poly (vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun 2019;10:4535.
84. Zhan C, Lian C, Zhang Y, et al. Computational insights into materials and interfaces for capacitive energy storage. Adv Sci 2017;4:1700059.
85. Schadler LS, Chen W, Brinson LC, et al. A perspective on the data-driven design of polymer nanodielectrics. J Phys D Appl Phys 2020;53:333001.
86. Sharma V, Wang C, Lorenzini RG, et al. Rational design of all organic polymer dielectrics. Nat Commun 2014;5:4845.
87. Ma R, Baldwin AF, Wang C, et al. Rationally designed polyimides for high-energy density capacitor applications. ACS Appl Mater Interfaces 2014;6:10445-51.
88. Ma R, Sharma V, Baldwin AF, et al. Rational design and synthesis of polythioureas as capacitor dielectrics. J Mater Chem A 2015;3:14845-52.
89. Sun Y, Boggs S, Ramprasad R. The intrinsic electrical breakdown strength of insulators from first principles. Appl Phys Lett 2012;101:132906.
90. Wang C, Pilania G, Boggs S, Kumar S, Breneman C, Ramprasad R, et al. Computational strategies for polymer dielectrics design. Polymer 2014;55:979-88.
91. Thakur Y, Zhang B, Dong R, et al. Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy 2017;32:73-9.
92. Yuan C, Zhou Y, Zhu Y, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat Commun 2020;11:3919.
93. Luo B, Wang X, Wang H, Cai Z, Li L. P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Compos Sci Technol 2017;151:94-103.
94. Zhang X, Shen Y, Shen Z, Jiang J, Chen L, Nan CW. Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength. ACS Appl Mater Interfaces 2016;8:27236-42.
95. Zhang X, Jiang Y, Gao R, et al. Tuning ferroelectricity of polymer blends for flexible electrical energy storage applications. Sci China Mater 2021;64:1642-52.
96. Qian X, Ye HJ, Yang T, et al. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Adv Funct Mater 2015;25:5134-9.
97. Jiang J, Shen Z, Qian J, et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Stor Mater 2019;18:213-21.
98. Zhang T, Dan Z, Shen Z, et al. An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites. RSC Adv 2020;10:5886-93.
99. Li Q, Cheng S. Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress. IEEE Electr Insul Mag 2020;36:7-28.
100. Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 2012;45:2937-54.
101. Claude J, Lu Y, Li K, Wang Q. Electrical storage in poly (vinylidene fluoride) based ferroelectric polymers: correlating polymer structure to electrical breakdown strength. Chem Mater 2008;20:2078-80.
102. Tan DQ. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J Appl Polym Sci 2020;137:49379.
103. Kim P, Jones SC, Hotchkiss PJ, et al. Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 2007;19:1001-5.
104. Xie B, Zhu Y, Marwat MA, Zhang S, Zhang L, Zhang H. Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. J Mater Chem A 2018;6:20356-64.
105. Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 2009;21:217-21.
106. Zhang X, Chen W, Wang J, et al. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers. Nanoscale 2014;6:6701-9.
107. Liu J, Shen Z, Xu W, et al. Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small 2020;16:2000714.
108. Wang P, Pan Z, Wang W, et al. Ultrahigh energy storage performance of a polymer-based nanocomposite via interface engineering. J Mater Chem A 2021;9:3530-9.
109. Zhang H, Marwat MA, Xie B, et al. Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Appl Mater Interfaces 2019;12:1-37.
110. Zhang X, Jiang J, Shen Z, et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv Mater 2018;30:1707269.
111. Bao Z, Hou C, Shen Z, et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites. Adv Mater 2020;32:1907227.
112. Li H, Ai D, Ren L, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv Mater 2019;31:1900875.
113. Guo R, Roscow JI, Bowen CR, et al. Significantly enhanced permittivity and energy density in dielectric composites with aligned BaTiO3 lamellar structures. J Mater Chem A 2020;8:3135-44.
114. Zhou Y, Li Q, Dang B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv Mater 2018;30:1805672.
115. Zhu Y, Zhu Y, Huang X, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv Energy Mater 2019;9:1901826.
116. Shen ZH, Wang JJ, Jiang JY, et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv Energy Mater 2018;8:1800509.
117. Ma FD, Wang YU. Depolarization field effect on dielectric and piezoelectric properties of particulate ferroelectric ceramic-polymer composites. J Appl Phys 2015;117:124101.
118. Lewis TJ. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 2004;11:739-53.
119. Roy M, Nelson J, MacCrone R, Schadler LS, Reed C, Keefe R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans Dielectr Electr Insul 2005;12:629-43.
120. Tanaka T, Kozako M, Fuse N, Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 2005;12:669-81.
121. Shen ZH, Wang JJ, Zhang X, et al. Space charge effects on the dielectric response of polymer nanocomposites. Appl Phys Lett 2017;111:092901.
122. Pan Z, Zhai J, Shen B. Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J Mater Chem A 2017;5:15217-26.
123. Shen ZH, Shen Y, Cheng XX, Liu HX, Chen LQ, Nan CW. High-throughput data-driven interface design of high-energy-density polymer nanocomposites. J Materiomics 2020;6:573-81.
124. Shen ZH, Wang JJ, Lin Y, Nan CW, Chen LQ, Shen Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv Mater 2018;30:1704380.
125. Shen ZH, Bao ZW, Cheng XX, et al. Designing polymer nanocomposites with high energy density using machine learning. NPJ Comput Mater 2021;7:110.
126. Tang H, Lin Y, Sodano HA. Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2012;2:469-76.
127. Luo S, Yu J, Yu S, et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv Energy Mater 2019;9:1803204.
128. Fan L, Yang D, Huang L, Fan M, Lei C, Fu Q. Polymer nanocomposite with enhanced energy storage capacity by introducing hierarchically-designed 1-dimension hybrid nanofiller. Polymer 2020;201:122608.
129. Pan Z, Yao L, Zhai JW, Fu D, Shen B, Wang H. High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl Mater Interfaces 2017;9:4024-33.
130. Luo B, Shen Z, Cai Z, et al. Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv Funct Mater 2021;31:2007994.
131. Jiang J, Shen Z, Cai X, et al. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv Energy Mater 2019;9:1803411.
132. Azizi A, Gadinski MR, Li Q, et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv Mater 2017;29:1701864.
133. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. Adv Mater 2015;27:6658-63.
134. Jiang J, Shen Z, Qian J, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019;62:220-9.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.