1. Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv Energy Mater 2018;8:1801926.
2. Li L, Tang C, Jin H, Davey K, Qiao S. Main-group elements boost electrochemical nitrogen fixation. Chem 2021;7:3232-55.
3. Jacobson MZ, von Krauland A, Coughlin SJ, et al. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ Sci 2022;15:3343-59.
4. Ding Y, Mu C, Wu T, et al. Increasing cryospheric hazards in a warming climate. Earth Sci Rev 2021;213:103500.
5. Yao D, Tang C, Wang P, et al. Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. Chem Eng Sci 2022;257:117735.
6. Yu H, Wan J, Goodsite M, Jin H. Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth 2023;6:267-77.
7. Chen P, Hou J, Wang L. Metal-organic framework-tailored perovskite solar cells. Microstructures 2022;2:2022014.
8. Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials. Science 2006;311:484-9.
9. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.
10. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.
11. Sun H, Mei L, Liang J, et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017;356:599-604.
12. Chen K, Xue D. Materials chemistry toward electrochemical energy storage. J Mater Chem A 2016;4:7522-37.
13. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009;8:500-6.
14. Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 2018;47:5919-45.
15. Zhang L, Zhou K, Wei Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy 2019;233-4:208-19.
16. Raj CJ, Manikandan R, Thondaiman P, et al. Sonoelectrochemical exfoliation of graphene in various electrolytic environments and their structural and electrochemical properties. Carbon 2021;184:266-76.
17. Lee SJ, Kim HJ, Hwang TH, et al. Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett 2017;17:1870-6.
18. Zhang X, Zhang W, Zhang L, et al. Single-pot solvothermal strategy toward support-free nanostructured LiBH4 featuring 12 wt% reversible hydrogen storage at 400 °C. Chem Eng J 2022;428:132566.
19. Li Y, Liu H, Xu J, et al. Hierarchical nanostructure-tuned super-high electrochemical stability of nickel cobalt sulfide. J Mater Chem A 2018;6:19788-97.
20. Carriazo D, Rossell MD, Zeng G, Bilecka I, Erni R, Niederberger M. Formation mechanism of LiFePO4 sticks grown by a microwave-assisted liquid-phase process. Small 2012;8:2231-8.
21. Wan J, Zhang G, Jin H, et al. Microwave-assisted synthesis of well-defined nitrogen doping configuration with high centrality in carbon to identify the active sites for electrochemical hydrogen peroxide production. Carbon 2022;191:340-9.
22. Fang G, Liu K, Fan M, et al. Unveiling the electron configuration-dependent oxygen evolution activity of 2D porous Sr-substituted LaFeO3 perovskite through microwave shock. Carbon Neutral 2023;2:709-20.
23. Strauss V, Marsh K, Kowal MD, El-Kady M, Kaner RB. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater 2018;30:1704449.
24. Jiang H, Li J, Xiao Z, et al. The rapid production of multiple transition metal carbides via microwave combustion under ambient conditions. Nanoscale 2020;12:16245-52.
25. Hu R, Wei L, Xian J, et al. Microwave shock process for rapid synthesis of 2D porous La0.2Sr0.8CoO3 perovskite as an efficient oxygen evolution reaction catalyst. Acta Physico Chim Sinica 2023;0:2212025.
26. Wan J, Huang L, Wu J, et al. Rapid synthesis of size-tunable transition metal carbide nanodots under ambient conditions. J Mater Chem A 2019;7:14489-95.
27. Xian J, Jiang H, Wu Z, et al. Microwave shock motivating the Sr substitution of 2D porous GdFeO3 perovskite for highly active oxygen evolution. J Energy Chem 2024;88:232-41.
28. Hu R, Jiang H, Xian J, et al. Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution. Appl Catal B Environ 2022;317:121728.
29. Wang C, Xu J, Yuen M, et al. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv Funct Mater 2014;24:6372-80.
30. Zhang Y, Yang S, Wang S, Liu X, Li L. Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Stor Mater 2019;18:447-55.
31. Kheradmandfard M, Minouei H, Tsvetkov N, et al. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Mater Chem Phys 2021;262:124265.
32. Zhang J, Yang Y, Zhang Z, Xu X, Wang X. Rapid synthesis of mesoporous NixCo3-x(PO4)2 hollow shells showing enhanced electrocatalytic and supercapacitor performance. J Mater Chem A 2014;2:20182-8.
33. Zheng W, Zhang P, Chen J, Tian WB, Zhang Y, Sun ZM. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J Mater Chem A 2018;6:3543-51.
34. Wan J, Yao X, Gao X, et al. Microwave combustion for modification of transition metal oxides. Adv Funct Mater 2016;26:7263-70.
35. Wan J, Hu R, Li J, et al. A universal construction of robust interface between 2D conductive polymer and cellulose for textile supercapacitor. Carbohydr Polym 2022;284:119230.
36. Dias A, Bundaleska N, Felizardo E, et al. N-graphene-metal-oxide(sulfide) hybrid nanostructures: single-step plasma-enabled approach for energy storage applications. Chem Eng J 2022;430:133153.
37. Jessl S, Copic D, Engelke S, Ahmad S, De Volder M. Hydrothermal coating of patterned carbon nanotube forest for structured lithium-ion battery electrodes. Small 2019;15:e1901201.
38. Liu Q, Tan G, Wang P, et al. Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy 2017;36:197-205.
39. Wang Z, Zhu Y, Qiao C, et al. Anionic Se-substitution toward high-performance CuS1-xSex nanosheet cathode for rechargeable magnesium batteries. Small 2019;15:e1902797.
40. Heuser S, Yang N, Hof F, Schulte A, Schönherr H, Jiang X. 3D 3C-SiC/graphene hybrid nanolaminate films for high-performance supercapacitors. Small 2018;14:e1801857.
41. Li N, Song H, Cui H, Wang C. Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 2014;3:102-12.
42. Tsai W, Lin R, Murali S, et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from -50 to 80 °C. Nano Energy 2013;2:403-11.
43. Su X, Ye C, Li X, et al. Heterogeneous stacking carbon films for optimized supercapacitor performance. Energy Stor Mater 2022;50:365-72.
44. Ji H, Liu C, Wang T, et al. Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 2015;11:6480-90.
45. Zhang W, Zheng Z, Lin L, et al. Ultrafast synthesis of graphene-embedded cyclodextrin-metal-organic framework for supramolecular selective absorbency and supercapacitor performance. Adv Sci 2023;10:e2304062.
46. Li C, Shen M, Hu B, et al. High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry. J Mater Chem A 2018;6:8340-8.
47. Li N, Song H, Cui H, Yang G, Wang C. Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. J Mater Chem A 2014;2:2526-37.
48. Antitomaso P, Fraisse B, Stievano L, et al. SnSb electrodes for Li-ion batteries: the electrochemical mechanism and capacity fading origins elucidated by using operando techniques. J Mater Chem A 2017;5:6546-55.
49. Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano 2020;11:100076.
50. Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 2014;114:6462-555.
51. Mishra RR, Sharma AK. Microwave-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos Part A Appl S 2016;81:78-97.
52. Zeng X, Cheng X, Yu R, Stucky GD. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020;168:606-23.
53. Schwenke AM, Hoeppener S, Schubert US. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 2015;27:4113-41.
54. Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 2004;43:6250-84.
55. Kitchen HJ, Vallance SR, Kennedy JL, et al. Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. Chem Rev 2014;114:1170-206.
56. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP. Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 1998;27:213-24.
57. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 2011;50:11312-59.
58. Wang J, Wu W, Kondo H, Fan T, Zhou H. Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology 2022;33:342002.
59. Zhu Y, Cao C, Zhang J, Xu X. Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application. J Mater Chem A 2015;3:9556-64.
60. Rafai S, Qiao C, Naveed M, et al. Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors. Chem Eng J 2019;362:576-87.
61. Wu Y, Cao T, Wang R, Meng F, Zhang J, Cao C. A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. J Mater Chem A 2018;6:8374-81.
62. Li N, Liao S, Sun Y, Song HW, Wang CX. Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability. J Mater Chem A 2015;3:5820-8.
63. Alshareef SF, Alhebshi NA, Almashhori K, Alshaikheid HS, Al-Hazmi F. A ten-minute synthesis of α-Ni(OH)2 nanoflakes assisted by microwave on flexible stainless-steel for energy storage devices. Nanomaterials 2022;12:1911.
64. Fathy M, Hassan H, Hafez H, Soliman M, Abulfotuh F, Kashyout AEHB. Simple and fast microwave-assisted synthesis methods of nanocrystalline TiO2 and rGO materials for low-cost metal-free DSSC applications. ACS Omega 2022;7:16757-65.
65. Rao RP, Ramasubramanian B, Saritha R, Ramakrishna S. Microwave assisted synthesis for ϵ-MnO2 nanostructures on Ni foam as for rechargeable Li-O2 battery applications. Nano Express 2023;4:045004.
66. Iqbal M, Saykar NG, Mahapatra SK. Microwave-induced rapid synthesis of MoS2@Cellulose composites as an efficient electrode material for quasi-solid-state supercapacitor application. Adv Eng Mater 2023;25:2201544.
67. Soin N, Roy SS, Mitra SK, Thundat T, Mclaughlin JA. Nanocrystalline ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J Mater Chem 2012;22:14944-50.
68. Wang W, Zhang N, Shi Z, et al. Preparation of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode. Chem Eng J 2018;338:55-61.
69. Zhu J, Chen M, Wei H, et al. Magnetocapacitance in magnetic microtubular carbon nanocomposites under external magnetic field. Nano Energy 2014;6:180-92.
70. He G, Li L, Manthiram A. VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries. J Mater Chem A 2015;3:14750-8.
71. Antiohos D, Romano MS, Razal JM, et al. Performance enhancement of single-walled nanotube-microwave exfoliated graphene oxide composite electrodes using a stacked electrode configuration. J Mater Chem A 2014;2:14835-43.
72. Murali S, Quarles N, Zhang LL, et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2013;2:764-8.
73. Wang C, Chui Y, Ma R, et al. A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J Mater Chem A 2013;1:10092-8.
74. Gupta KK, Li K, Balaji S, Kumar PS, Lu C. Microwave-assisted synthesis and electrochemical characterization of TiNb2O7 microspheres as anode materials for lithium-ion batteries. J Am Ceram Soc 2023;106:4192-201.
75. Zoller F, Peters K, Zehetmaier PM, et al. Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized tin oxide/graphene composites. Adv Funct Mater 2018;28:1706529.
76. Wang Y, Zhang Y, Li H, et al. Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries. Chem Eng J 2018;332:49-56.
77. Örnek A. Positive effects of a particular type of microwave-assisted methodology on the electrochemical properties of olivine LiMPO4 (M= Fe, Co and Ni) cathode materials. Chem Eng J 2018;331:501-9.
78. Sahu SR, Rikka VR, Haridoss P, Chatterjee A, Gopalan R, Prakash R. A novel α-MoO3/single-walled carbon nanohorns composite as high-performance anode material for fast-charging lithium-ion battery. Adv Energy Mater 2020;10:2001627.
79. Tian Y, Liu X, Cao X, et al. Microwave-assisted synthesis of 1T MoS2/Cu nanowires with enhanced capacity and stability as anode for LIBs. Chem Eng J 2019;374:429-36.
80. Yin X, Chen X, Sun W, Lv L, Wang Y. Revealing the effect of cobalt-doping on Ni/Mn-based coordination polymers towards boosted Li-storage performances. Energy Stor Mater 2020;25:846-57.
81. Cheng Y, Pandey RK, Li Y, et al. Conducting nitrogen-incorporated ultrananocrystalline diamond coating for highly structural stable anode materials in lithium ion battery. Nano Energy 2020;74:104811.
82. Tang X, Wang H, Fan J, Lv L, Sun W, Wang Y. CNT boosted two-dimensional flaky metal-organic nanosheets for superior lithium and potassium storage. Chem Eng J 2022;430:133023.
83. Zhou Y, Zhang X, Liu Y, et al. A high-temperature Na-ion battery: boosting the rate capability and cycle life by structure engineering. Small 2020;16:e1906669.
84. Yao X, Ke Y, Ren W, et al. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv Energy Mater 2019;9:1803260.
85. Lu X, Wang Z, Liu K, et al. Hierarchical Sb2MoO6 microspheres for high-performance sodium-ion battery anode. Energy Stor Mater 2019;17:101-10.
86. Hou Y, Chang K, Wang Z, et al. Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries. Sci China Mater 2019;62:474-86.
87. Martin A, Doublet M, Kemnitz E, Pinna N. Reversible sodium and lithium insertion in iron fluoride perovskites. Adv Funct Mater 2018;28:1802057.
88. Guan J, Huang Q, Shao L, et al. Polyanion-type Na3V2(PO4)2F3@rGO with high-voltage and ultralong-life for aqueous zinc ion batteries. Small 2023;19:e2207148.
89. Zhao W, Fee J, Khanna H, et al. A two-electron transfer mechanism of the Zn-doped δ-MnO2 cathode toward aqueous Zn-ion batteries with ultrahigh capacity. J Mater Chem A 2022;10:6762-71.
90. Kim S, Soundharrajan V, Kim S, et al. Microwave-assisted rapid synthesis of NH4V4O10 layered oxide: a high energy cathode for aqueous rechargeable zinc ion batteries. Nanomaterials 2021;11:1905.
91. Jia D, Zheng K, Song M, et al. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res 2020;13:215-24.
92. Chen S, Zhang Y, Geng H, Yang Y, Rui X, Li CC. Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J Power Sources 2019;441:227192.
93. Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater 2018;30:1907798.
94. Zhao T, Liu C, Meng T, et al. Vacancy-clusters in-situ induced via microwave-irradiation enable high-durability and capacitor-level rate li-ion storage. Chem Eng J 2023;466:143053.
95. Jiang H, Xian J, Hu R, et al. Microwave discharge for rapid introduction of bimetallic-synergistic configuration to conductive catecholate toward long-term supercapacitor. Chem Eng J 2023;455:140804.
96. Huang N, Sun Y, Liu S, et al. Microwave-assisted rational designed CNT-Mn3O4/CoWO4 hybrid nanocomposites for high performance battery-supercapacitor hybrid device. Small 2023;19:e2300696.
97. Sun Y, Huang N, Zhao D, et al. Microwave-assisted in-situ isomorphism via introduction of Mn into CoCo2O4 for battery-supercapacitor hybrid electrode material. Chem Eng J 2022;430:132729.
98. Chen Y, Ni D, Yang X, Liu C, Yin J, Cai K. Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim Acta 2018;278:114-23.
99. Kaplan C, Hidalgo MFV, Zuba MJ, Chernova NA, Piper LFJ, Whittingham MS. Microwave-assisted solvothermal synthesis of LiVyM1-yOPO4 (M = Mn, Cr, Ti, Zr, Nb, Mo, W) cathode materials for lithium-ion batteries. J Mater Chem A 2021;9:6933-44.
100. Wan J, Huang L, Wu J, et al. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv Funct Mater 2018;28:1800382.
101. Tian X, Cheng C, Qian L, et al. Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor. J Mater Chem 2012;22:8029-35.
102. Yan Z, Gao Z, Zhang Z, Dai C, Wei W, Shen PK. Graphene nanosphere as advanced electrode material to promote high performance symmetrical supercapacitor. Small 2021;17:e2007915.
103. Chen T, Pan L, Lu T, Fu C, Chua DHC, Sun Z. Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries. J Mater Chem A 2014;2:1263-7.
104. Lai L, Zhu J, Li Z, et al. Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy 2014;3:134-43.
105. Amaresh S, Karthikeyan K, Jang I, Lee YS. Single-step microwave mediated synthesis of the CoS2 anode material for high rate hybrid supercapacitors. J Mater Chem A 2014;2:11099-106.
106. Shi Y, Gao J, Abruña HD, et al. Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy 2014;8:297-304.
107. Haruna AB, Barrett DH, Rodella CB, et al. Microwave irradiation suppresses the Jahn-Teller distortion in spinel LiMn2O4 cathode material for lithium-ion batteries. Electrochimica Acta 2022;426:140786.
108. Velásquez EA, Silva DPB, Falqueto JB, et al. Understanding the loss of electrochemical activity of nanosized LiMn2O4 particles: a combined experimental and ab initio DFT study. J Mater Chem A 2018;6:14967-74.
109. Karthikeyan K, Amaresh S, Aravindan V, Lee YS. Microwave assisted green synthesis of MgO-carbon nanotube composites as electrode material for high power and energy density supercapacitors. J Mater Chem A 2013;1:4105-11.
110. Liu M, Zhao Q, Liu H, et al. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019;64:103942.
111. Lin F, Nordlund D, Weng TC, et al. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat Commun 2014;5:3358.
112. Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 2013;342:716-20.
113. Kim T, Park J, Chang SK, Choi S, Ryu JH, Song H. The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2012;2:860-72.
114. Kim H, Jegal J, Kim J, Yoon S, Roh KC, Kim K. In situ fabrication of lithium titanium oxide by microwave-assisted alkalization for high-rate lithium-ion batteries. J Mater Chem A 2013;1:14849-52.
115. Sun Y, Li C, Yang C, et al. Novel Li3VO4 Nanostructures grown in highly efficient microwave irradiation strategy and their in-situ lithium storage mechanism. Adv Sci 2022;9:e2103493.
116. Guo Y, Cao Y, Lu J, Zheng X, Deng Y. The concept, structure, and progress of seawater metal-air batteries. Microstructures 2023;3:2023038.
117. Pei J, Chen G, Zhang Q, Bie C, Sun J. Phase separation derived core/shell structured Cu11V6O26/V2O5 microspheres: first synthesis and excellent lithium-ion anode performance with outstanding capacity self-restoration. Small 2017;13:1603140.
118. Fan M, Liao D, Aboud MFA, Shakir I, Xu Y. A universal strategy toward ultrasmall hollow nanostructures with remarkable electrochemical performance. Angew Chem Int Ed 2020;59:8247-54.
119. Liu K, Jin H, Huang L, et al. Puffing ultrathin oxides with nonlayered structures. Sci Adv 2022;8:eabn2030.
120. Yoon S, Manthiram A. Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries. J Mater Chem 2011;21:4082.
121. An G, Sohn JI, Ahn H. Hierarchical architecture of hybrid carbon-encapsulated hollow manganese oxide nanotubes with a porous-wall structure for high-performance electrochemical energy storage. J Mater Chem A 2016;4:2049-54.
122. Cheng Q, Yang T, Li Y, Li M, Chan CK. Oxidation-reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. J Mater Chem A 2016;4:6902-10.
123. Zhu J, Li Q, Bi W, et al. Ultra-rapid microwave-assisted synthesis of layered ultrathin birnessite K0.17MnO2 nanosheets for efficient energy storage. J Mater Chem A 2013;1:8154-9.
124. Zhao P, Li L, Wang X. BaTiO3-NaNbO3 energy storage ceramics with an ultrafast charge-discharge rate and temperature-stable power density. Microstructures 2022;3:2022023.
125. Lee K, Shin S, Degen T, Lee W, Yoon YS. In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. Nano Energy 2017;32:397-407.
126. Sridhar V, Kim HJ, Jung JH, Lee C, Park S, Oh IK. Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance. ACS Nano 2012;6:10562-70.
127. Lee SH, Sridhar V, Jung JH, et al. Graphene – nanotube - iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 2013;7:4242-51.
128. Wang X, Wang Y, Wu M, Fang R, Yang X, Wang D. Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2022;2:2022016.
129. Li D, Guo Q, Cao M, Yao Z, Liu H, Hao H. The influence of A/B-sites doping on antiferroelectricity of PZO energy storage films. Microstructures 2023;3:2023007.
130. Dai R, Sun W, Lv LP, et al. Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small 2017;13:1700521.
131. Wang Y, Ke J, Zhang Y, Huang Y. Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo2O4 anode materials for high-performance lithium-ion batteries. J Mater Chem A 2015;3:24303-8.
132. Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 2018;57:102-20.
133. Zhao C, Lu Y, Li Y, et al. Novel methods for sodium-ion battery materials. Small Methods 2017;1:1600063.
134. Yang Q, Fan Q, Peng J, Chou S, Liu H, Wang J. Recent progress on alloy-based anode materials for potassium-ion batteries. Microstructures 2023;3:2023013.
135. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.
136. Roh H, Kim H, Kim M, et al. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res 2016;9:1844-55.
137. Sengupta A, Kumar A, Barik G, et al. Lower diffusion-induced stress in nano-crystallites of P2-Na2/3Ni1/3Mn1/2Ti1/6O2 novel cathode for high energy Na-ion batteries. Small 2023;19:e2206248.
138. Jin H, Song T, Paik U, Qiao SZ. Metastable two-dimensional materials for electrocatalytic energy conversions. Acc Mater Res 2021;2:559-73.
139. Islam S, Lee S, Lee S, et al. Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chem Eng J 2022;446:137069.
140. Liu L, Lin Z, Shi Q, et al. High-performance 3D biphasic NH4V3O8/Zn3(OH)2V2O7·2H2O synthesized by rapid chemical precipitation as cathodes for Zn-ion batteries. Electrochem Commun 2022;140:107331.
141. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012;41:797-828.
142. Luo Q, Lu C, Liu L, Zhu M. Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor. Microstructures 2023;3:2023011.
143. Liu G, Chen L, Qi H. Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion. Microstructures 2023;3:2023009.
144. Simon P, Gogotsi Y, Dunn B. Materials science. Where do batteries end and supercapacitors begin? Science 2014;343:1210-1.
145. Wang W, Xiao Y, Li X, Cheng Q, Wang G. Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices. Chem Eng J 2019;371:327-36.
146. Wang W, Jin J, Wu Y, et al. Unique holey graphene/carbon dots frameworks by microwave-initiated chain reduction for high-performance compressible supercapacitors and reusable oil/water separation. J Mater Chem A 2019;7:22054-62.
147. Sun Y, Zhang J, Liu S, Sun X, Huang N. An enhancement on supercapacitor properties of porous CoO nanowire arrays by microwave-assisted regulation of the precursor. Nanotechnology 2021;32:195707.
148. Jiang Y, Guo S, Li Y, Hu X. Rapid microwave synthesis of carbon-bridged Nb2O5 mesocrystals for high-energy and high-power sodium-ion capacitors. J Mater Chem A 2022;10:11470-6.
149. Wang Z, Jia W, Jiang M, Chen C, Li Y. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Sci China Mater 2015;58:944-52.
150. Lin L, Yeh M, Tsai J, Huang Y, Sun C, Ho K. A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A 2013;1:11237.
151. Gupta N, Sahu RK, Mishra T, Bhattacharya P. Microwave-assisted rapid synthesis of titanium phosphate free phosphorus doped Ti3C2 MXene with boosted pseudocapacitance. J Mater Chem A 2022;10:15794-810.
152. Wang W, Zhang W, Wang G, Li C. Electrophoresis-microwave synthesis of S,N-doped graphene foam for high-performance supercapacitors. J Mater Chem A 2021;9:15766-75.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.