1. Sato A, Chishima E, Soma K, Mori T. Shape memory effect in γ⇌ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 1982;30:1177-83.
2. Dunne D. Shape memory in ferrous alloys. In phase transformations in steels, Pereloma E, Edmonds DV, editors. Soston, UK: Woodhead Publishing; 2012, pp. 83-125.
3. Alaneme KK, Okotete EA. Reconciling viability and cost-effective shape memory alloy options - a review of copper and iron based shape memory metallic systems. Eng Sci Technol Int J 2016;19:1582-92.
4. Carlisle EM. Silicon. In biochemistry of the essential ultratrace elements, Frieden E, editor. Boston, MA: Springer; 1984, pp. 257-91.
5. Santamaria AB. Manganese exposure, essentiality & toxicity. J Med Res 2008;128:484-500.
6. Avila DS, Puntel RL, Aschner M. Manganese in health and disease. Met Ions Life Sci 2013;13:199-227.
7. Tuschl K, Mills PB, Clayton PT. Chapter Twelve - manganese and the Brain, in international review of neurobiology, Bhatia KP, Schneider SA, editors. Cambridge: Academic Press; 2013, pp. 277-312.
8. Ahire JH, Chambrier I, Mueller A, Bao Y, Chao Y. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. ACS Appl Mater Interfaces 2013;5:7384-91.
9. Liu D, Mäkilä E, Zhang H, et al. Nanostructured porous silicon-solid lipid nanocomposite: towards enhanced cytocompatibility and stability, reduced cellular association, and prolonged drug release. Adv Funct Mater 2013;23:1893-902.
10. Kafshgari MH, Voelcker NH, Harding FJ. Applications of zero-valent silicon nanostructures in biomedicine. Nanomedicine 2015;10:2553-71.
11. Fântânariu M, Trincă LC, Solcan C, et al. A new Fe-Mn-Si alloplastic biomaterial as bone grafting material: in vivo study. Appl Surf Sci 2015;352:129-39.
12. Trincă LC, Burtan L, Mareci D, et al. Evaluation of in vitro corrosion resistance and in vivo osseointegration properties of a FeMnSiCa alloy as potential degradable implant biomaterial. Mater Sci Eng C Mater Biol Appl 2021;118:111436.
13. Liu B, Zheng Y, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 2011;65:540-3.
14. Rațoi M, Stanciu S, Cimpoeşu N, Cimpoeşu I, Constantin B, Paraschiv C. A potential biodegradable metallic material with shape memory effect based on iron. In structural integrity of welded structures, Murariu AC, editor. 2013. p. 110.
15. Drevet R, Zhukova Y, Kadirov P, et al. Tunable corrosion behavior of calcium phosphate coated Fe-Mn-Si alloys for bone implant applications. Metall Mat Trans A 2018;49:6553-60.
16. Drevet R, Zhukova Y, Malikova P, et al. Martensitic transformations and mechanical and corrosion properties of Fe-Mn-Si alloys for biodegradable medical implants. Metall Mat Trans A 2018;49:1006-13.
17. Prokoshkin S, Pustov Y, Zhukova Y, et al. Effect of thermomechanical treatment on structure and functional fatigue characteristics of biodegradable Fe-30Mn-5Si(wt %) shape memory alloy. Materials 2021;14:3327.
18. Babacan N, Kochta F, Hoffmann V, et al. Effect of silver additions on the microstructure, mechanical properties and corrosion behavior of biodegradable Fe-30Mn-6Si. Mater Today Commun 2021;28:102689.
19. Wang Y, Venezuela J, Dargusch M. Biodegradable shape memory alloys: progress and prospects. Biomaterials 2021;279:121215.
20. Del-río L, Nó M, Sota A, et al. Internal friction associated with ε martensite in shape memory steels produced by casting route and through additive manufacturing: influence of thermal cycling on the martensitic transformation. J Alloys Compd 2022;919:165806.
21. Ewald FC, Brenne F, Gustmann T, Vollmer M, Krooß P, Niendorf T. Laser powder bed fusion processing of Fe-Mn-Al-Ni shape memory alloy-on the effect of elevated platform temperatures. Metals 2021;11:185.
22. Ferretto I, Kim D, Della Ventura N, Shahverdi M, Lee W, Leinenbach C. Laser powder bed fusion of a Fe-Mn-Si shape memory alloy. Addit Manuf 2021;46:102071.
23. Kim D, Ferretto I, Jeon JB, Leinenbach C, Lee W. Formation of metastable bcc-δ phase and its transformation to fcc-γ in laser powder bed fusion of Fe-Mn-Si shape memory alloy. J Mater Res Technol 2021;14:2782-8.
24. Kim D, Ferretto I, Kim W, Leinenbach C, Lee W. Effect of post-heat treatment conditions on shape memory property in 4D printed Fe-17Mn-5Si-10Cr-4Ni shape memory alloy. Mater Sci Eng A 2022;852:143689.
25. Kim D, Ferretto I, Leinenbach C, Lee W. 3D and 4D printing of complex structures of Fe Mn Si-based shape memory alloy using laser powder bed fusion. Adv Mater Int 2022;9:2200171.
26. Niendorf T, Brenne F, Krooß P, et al. Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by selective laser melting. Metall Mat Trans A 2016;47:2569-73.
27. Patriarca L, Abuzaid W, Carlucci G, Belelli F, Casati R. Pseudoelasticity in FeMnNiAl shape memory alloy lattice structures produced by Laser Powder Bed Fusion. Mater Lett 2021;302:130349.
28. Ferretto I, Borzì A, Kim D, et al. Control of microstructure and shape memory properties of a Fe-Mn-Si-based shape memory alloy during laser powder bed fusion. Addit Manuf Lett 2022;3:100091.
29. Niendorf T, Brenne F, Hoyer P, et al. Processing of new materials by additive manufacturing: iron-based alloys containing silver for biomedical applications. Metall Mat Trans A 2015;46:2829-33.
30. Wiesener M, Peters K, Taube A, et al. Corrosion properties of bioresorbable FeMn-Ag alloys prepared by selective laser melting. Mater Corros 2017;68:1028-36.
31. Mosallanejad MH, Niroumand B, Aversa A, Saboori A. In-situ alloying in laser-based additive manufacturing processes: a critical review. J Alloys Compd 2021;872:159567.
32. Carter LN, Martin C, Withers PJ, Attallah MM. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd 2014;615:338-47.
33. Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci 2007;253:8064-9.
34. Krauss H, Zaeh M. Investigations on manufacturability and process reliability of selective laser melting. Phys Procedia 2013;41:815-22.
35. Yan X, Chang C, Dong D, et al. Microstructure and mechanical properties of pure copper manufactured by selective laser melting. Mater Sci Eng A 2020;789:139615.
36. Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 1967;22:151-2.
37. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 1969;2:65-71.
38. Will G. The rietveld method. In powder diffraction. Berlin Heidelberg: Springer; 2006, pp. 41-72.
39. Degen T, Sadki M, Bron E, König U, Nénert G. The HighScore suite. Powder Diffr 2014;29:S13-8.
40. Huang C, Ni H, Yen H. New protocol for orientation reconstruction from martensite to austenite in steels. Materialia 2020;9:100554.
41. Nishiyama Z, Crystallography of martensite (general). In martensitic transformation, Fine ME, editor. Cambridge: Academic Press; 1978, pp. 14-134.
42. Ansari MJ, Nguyen DS, Park HS. Investigation of SLM process in terms of temperature distribution and melting pool size: modeling and experimental approaches. Materials 2019;12:1272.
43. Li X, Kang C, Huang H, Zhang L, Sercombe T. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: processing, microstructure evolution and mechanical properties. Mater Sci Eng A 2014;606:370-9.
44. Dong L, Makradi A, Ahzi S, Remond Y. Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 2009;209:700-6.
45. Roberts I, Wang C, Esterlein R, Stanford M, Mynors D. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 2009;49:916-23.
46. Tsujimoto H, Kozaki S, Okutani Y, et al. Lifespan enhancement of crane rails, runway girders and overhead cranes using shape-memory alloyed fish-plates; 2017, pp. 72-80.
47. Cao B, Iwamoto T. An experimental investigation on rate dependency of thermomechanical and Stress-induced martensitic transformation behavior in Fe-28Mn-6Si-5Cr shape memory alloy under compression. Int J Impact Eng 2019;132:103284.
48. ASTM E92-16. Standard test methods for Vickers hardness and Knoop hardness of metallic materials. PA, USA: ASTM International; 2016.
49. Darvish K, Chen Z, Pasang T. Reducing lack of fusion during selective laser melting of CoCrMo alloy: effect of laser power on geometrical features of tracks. Mater Des 2016;112:357-66.
50. Carluccio D, Bermingham M, Kent D, Demir AG, Previtali B, Dargusch MS. Comparative study of pure iron manufactured by selective laser melting, laser metal deposition, and casting processes. Adv Eng Mater 2019;21:1900049.
51. Letenneur M, Brailovski V, Kreitcberg A, Paserin V, Bailon-Poujol I. Laser powder bed fusion of water-atomized iron-based powders: process optimization. J Manuf Mater Process 2017;1:23.
52. Liverani E, Toschi S, Ceschini L, Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316 L austenitic stainless steel. J Mater Process Technol 2017;249:255-63.
53. Wang D, Song C, Yang Y, Bai Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316 L stainless steel parts. Mater Des 2016;100:291-9.
54. Nguyen Q, Zhu Z, Ng F, Chua B, Nai S, Wei J. High mechanical strengths and ductility of stainless steel 304 L fabricated using selective laser melting. J Mater Sci Technol 2019;35:388-94.
55. Kang N, Coddet P, Dembinski L, Liao H, Coddet C. Microstructure and strength analysis of eutectic Al-Si alloy in-situ manufactured using selective laser melting from elemental powder mixture. J Alloys Compd 2017;691:316-22.
56. Hou Y, Su H, Zhang H, Wang X, Wang C. Fabricating homogeneous FeCoCrNi high-entropy alloys via SLM in situ alloying. Metals 2021;11:942.
57. Haynes WM, Lide DR. CRC handbook of chemistry and physics. In CRC handbook of chemistry and physics, Haynes WM, Lide DR, editors. Cleveland, Ohio: CRC Press; 2017, pp. 97-126.
58. Chu J, Bao Y. Volatilization behavior of manganese from molten steel with different alloying methods in vacuum. Metals 2020;10:1348.
59. Yang C, Lin H, Lin K. Improvement of shape memory effect in Fe-Mn-Si alloy by slight tantalum addition. Mater Sci Eng A 2009;518:139-43.
60. Watson A, Markus T. Ternary system Fe-Mn-Si. In ternary steel systems: phase diagrams and phase transition data, Watson A, Markus T, editors. Berlin Heidelberg: Springer; 2015, pp. 121-33.
61. Tenbrock C, Fischer FG, Wissenbach K, et al. Influence of keyhole and conduction mode melting for top-hat shaped beam profiles in laser powder bed fusion. J Mater Process Technol 2020;278:116514.
62. Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol 2014;214:2522-8.
63. Madison JD, Aagesen LK. Quantitative characterization of porosity in laser welds of stainless steel. Scripta Materialia 2012;67:783-6.
64. He P, Webster RF, Yakubov V, et al. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing. Acta Mater 2021;220:117312.
65. DuPont JN. Fundamentals of weld solidification. In Welding Fundamentals and Processes. 2011; pp. 96-114.
66. Liu B, Li B, Li Z. Selective laser remelting of an additive layer manufacturing process on AlSi10Mg. Results Phys 2019;12:982-8.
67. Ghayoor M, Lee K, He Y, Chang C, Paul BK, Pasebani S. Selective laser melting of 304 L stainless steel: role of volumetric energy density on the microstructure, texture and mechanical properties. Addit Manuf 2020;32:101011.
68. Pham MS, Dovgyy B, Hooper PA, Gourlay CM, Piglione A. The role of side-branching in microstructure development in laser powder-bed fusion. Nat Commun 2020;11:749.
69. Lippold JC. Welding metallurgy principles. In welding metallurgy and weldability; 2014. pp. 9-83.
70. Zhang X, Yocom CJ, Mao B, Liao Y. Microstructure evolution during selective laser melting of metallic materials: a review. J Laser Appl 2019;31:031201.
71. Bertoli U, Macdonald BE, Schoenung JM. Stability of cellular microstructure in laser powder bed fusion of 316 L stainless steel. Mater Sci Eng A 2019;739:109-17.
72. Pinomaa T, Lindroos M, Walbrühl M, Provatas N, Laukkanen A. The significance of spatial length scales and solute segregation in strengthening rapid solidification microstructures of 316 L stainless steel. Acta Mater 2020;184:1-16.
73. Li Y, Gu D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 2014;63:856-67.
74. Chen Y, Chen H, Chen J, Xiong J, Wu Y, Dong S. Numerical and experimental investigation on thermal behavior and microstructure during selective laser melting of high strength steel. J Manuf Process 2020;57:533-42.
75. Jung HY, Choi SJ, Prashanth KG, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study. Mater Des 2015;86:703-8.
76. Suryawanshi J, Prashanth K, Scudino S, Eckert J, Prakash O, Ramamurty U. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 2016;115:285-94.
77. Prashanth K, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys. J Alloys Compd 2017;707:27-34.
78. Guan J, Jiang Y, Zhang X, Chong X. Microstructural evolution and EBSD analysis of AlSi10Mg alloy fabricated by selective laser remelting. Mater Charact 2020;161:110079.
79. Xiong Z, Zhang P, Tan C, Dong D, Ma W, Yu K. Selective laser melting and remelting of pure tungsten. Adv Eng Mater 2020;22:1901352.
80. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater 2016;117:371-92.
81. Debroy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci 2018;92:112-224.
82. Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE. Microstructures and mechanical properties of Ti6Al4V Parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 2013;22:3872-83.
83. Trevisan F, Calignano F, Lorusso M, et al. On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials 2017;10:76.
84. Spierings A, Dawson K, Dumitraschkewitz P, Pogatscher S, Wegener K. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition. Addit Manuf 2018;20:173-81.
85. Cao S, Zou Y, Lim CVS, Wu X. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: process, post-process treatment, microstructure, and property. Light Adv Manuf 2021;2.
86. Nigito E, Diemer F, Husson S, Ou S, Tsai M, Rézaï-aria F. Microstructure of NiTi superelastic alloy manufactured by selective laser melting. Mater Lett 2022;324:132665.
87. Attard B, Cruchley S, Beetz C, Megahed M, Chiu Y, Attallah M. Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components. Addit Manuf 2020;36:101432.
88. Li X, Tan W. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Comput Mater Sci 2018;153:159-69.
89. Antonysamy A, Meyer J, Prangnell P. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater Charact 2013;84:153-68.
90. Mohebbi MS, Ploshikhin V. Implementation of nucleation in cellular automaton simulation of microstructural evolution during additive manufacturing of Al alloys. Addit Manuf 2020;36:101726.
91. Yan F, Xiong W, Faierson EJ. Grain structure control of additively manufactured metallic materials. Materials 2017;10:1260.
92. Yang M, Wang L, Yan W. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. NPJ Comput Mater 2021:7.
93. Ikeda T, Yonehara M, Ikeshoji T, et al. Influences of process parameters on the microstructure and mechanical properties of CoCrFeNiTi based high-entropy alloy in a laser powder bed fusion process. Crystals 2021;11:549.
94. Liu D, Wang S, Yan W. Grain structure evolution in transition-mode melting in direct energy deposition. Mater Des 2020;194:108919.
95. Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A 2015;639:647-55.
96. Ali H, Ghadbeigi H, Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater Sci Eng A 2018;712:175-87.
97. Chen C, Yin J, Zhu H, Xiao Z, Zhang L, Zeng X. Effect of overlap rate and pattern on residual stress in selective laser melting. Int J Mach Tools Manuf 2019;145:103433.
98. Acharya R, Sharon JA, Staroselsky A. Prediction of microstructure in laser powder bed fusion process. Acta Mater 2017;124:360-71.
99. Liu P, Wang Z, Xiao Y, Horstemeyer MF, Cui X, Chen L. Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing. Addit Manuf 2019;26:22-9.
100. Wang T, Zhu Y, Zhang S, Tang H, Wang H. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J Alloys Compd 2015;632:505-13.
101. Ozcan H, Ma J, Wang S, et al. Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scripta Mater 2017;134:66-70.
102. Vollmer M, Krooß P, Kriegel M, et al. Cyclic degradation in bamboo-like Fe-Mn-Al-Ni shape memory alloys - the role of grain orientation. Scripta Mater 2016;114:156-60.
103. Ueland SM, Chen Y, Schuh CA. Oligocrystalline shape memory alloys. Adv Funct Mater 2012;22:2094-9.
104. Abbaschian R, Abbaschian L, Reed-Hill RE. Elements of grain boundaries. In physical metallurgy principles, Stamford, CT: Cengage learning; 2009, pp. 158-93.
105. Callister WD, Rethwisch DG. Dislocations and strengthening mechanisms. In materials science and engineering: an introduction. Hoboken, NJ: Wiley; 2014, pp. 216-50.
106. Xu Z, Hodgson MA, Cao P. A comparative study of powder metallurgical (PM) and wrought Fe-Mn-Si alloys. Mater Sci Eng A 2015;630:116-24.
107. Fiocchi J, Lemke J, Zilio S, Biffi C, Coda A, Tuissi A. The effect of Si addition and thermomechanical processing in an Fe-Mn alloy for biodegradable implants: mechanical performance and degradation behavior. Mater Today Commun 2021;27:102447.
108. Bergeon N, Guenin G, Esnouf C. Microstructural analysis of the stress-induced ε martensite in a Fe-Mn-Si-Cr-Ni shape memory alloy: Part I—calculated description of the microstructure. Mater Sci Eng A 1998;242:77-86.
109. Gu Q, Van Humbeeck J, Delaey L. A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys. J Phys 1994;04:C3-135.
110. Putaux JL, Chevalier JP. HREM study of self-accommodated thermal ε-martensite in an F-Mn-Si-Cr-Ni shape memory alloy. Acta Mater 1996;44:1701-16.
111. Jang W, Kang J, Jeeb K, Shinb M, Hong J. The effects of grain size and transformation texture on the shape memory effect in Fe-15Mn-5Cr-5Co-3Si alloy. In Ecomaterials, Yamamoto R, editor. Elsevier. 1994; pp. 993-6.
112. Käfer KA, Bernardi HH, Santos ODS, Otubo L, Lima NBD, Otubo J. The influence of microstructure and mechanical resistance on the shape memory of ecae processed stainless Fe-Mn-Si-Cr-Ni-Co steel. Mat Res 2018:21.
113. Onuki Y, Fujieda S, Shinoda K, Ohtani H, Maruyama T, Suzuki S. Depletion of manganese in the surface layers of Fe-Mn-Si shape memory alloys by annealing. Defect Diffus Forum 2015;363:196-201.
114. Callister WD, Rethwisch DG. Imperfections in solids. In materials science and engineering: an introduction. Hoboken, NJ: Wiley; 2018, pp. 92-120.
115. Feng YP, Blanquer A, Fornell J, et al. Novel Fe-Mn-Si-Pd alloys: insights into mechanical, magnetic, corrosion resistance and biocompatibility performances. J Mater Chem B 2016;4:6402-12.
116. Spandana D, Desai H, Chakravarty D, Vijay R, Hembram K. Fabrication of a biodegradable Fe-Mn-Si alloy by field assisted sintering. Adv Powder Technol 2020;31:4577-84.
117. Eskil M, Kanca E. A new formulation for martensite start temperature of Fe-Mn-Si shape memory alloys using genetic programming. Comput Mater Sci 2008;43:774-84.
118. Hsu T, Zuyao X. Martensitic transformation in Fe-Mn-Si based alloys. Mater Sci Eng A 1999;273-275:494-7.
119. Balo ŞN. A comparative study on crystal structure and magnetic properties of Fe-Mn-Si and Fe-Mn-Si-Cr Alloys. J Supercond Nov Magn 2013;26:1085-8.
120. Tomota Y, Strum M, Morris JW. Microstructural dependence of Fe-high Mn tensile behavior. Metall Trans A 1986;17:537-47.
121. Zaefferer S, Elhami N, Konijnenberg P. Electron backscatter diffraction (EBSD) techniques for studying phase transformations in steels. In phase transformations in steels, Pereloma E, Edmonds DV, editor. Woodhead Publishing; 2012, pp. 557-87.
122. Roberts G, Ward RM, Strangwood M, Davis CL. Use of misorientation values to further understand deformation in rail steels. Ironmak Steelmak 2013;40:92-7.
123. Wright SI, Nowell MM, Field DP. A review of strain analysis using electron backscatter diffraction. Microsc Microanal 2011;17:316-29.
124. Brewer LN, Field DP, Merriman CC. Mapping and assessing plastic deformation using EBSD. In electron backscatter diffraction in materials science, Schwartz AJ, editor. Boston, MA: Springer; 2009, pp. 251-62.
125. Hou J, Peng Q, Shoji T, Wang J, Han E, Ke W. Effects of cold working path on strain concentration, grain boundary microstructure and stress corrosion cracking in Alloy 600. Corros Sci 2011;53:2956-62.
126. Hu X, Chai L, Zhu Y, et al. Quantitative study of microstructural, textural and hardness evolution of high-purity Ti sheet during rolling from low to medium strains. Mater Today Commun 2021;29:102989.
127. Qiao D, Zhang W, Pan T, Crooker P, David S, Feng Z. Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping. Sci Technol Weld Join 2013;18:624-30.
128. Fukui D, Nakada N, Onaka S. Internal residual stress originated from Bain strain and its effect on hardness in Fe-Ni martensite. Acta Mater 2020;196:660-8.
129. Mercelis P, Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rap Prototyp J 2006;12:254-65.
130. Vrancken B, Cain V, Knutsen R, Van Humbeeck J. Residual stress via the contour method in compact tension specimens produced via selective laser melting. Scripta Mater 2014;87:29-32.
131. Lu L, Wu C, Wang J, Liu Y, Tu H, Su X. Experimental investigation and thermodynamic calculation of the Zn-Fe-Ce system. J Alloys Compd 2015;648:881-9.
132. Liu Y, Yang Y, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 2016;87:647-56.
133. Mishurova T, Cabeza S, Artzt K, et al. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials 2017;10:348.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.