1. Raj B, Vijayalakshmi M, Rao PV, Rao K. Challenges in materials research for sustainable nuclear energy. MRS Bull 2008;33:327-37.
2. Zinkle SJ, Busby JT. Structural materials for fission & fusion energy. Mater Today 2009;12:12-9.
3. Busby JT. Overview of structural materials in water-cooled fission reactors. Structural alloys for nuclear energy applications. Elsevier; 2019. p. 1-22.
4. Konings RJM, Stoller RE. Comprehensive nuclear materials. 2nd ed. Elsevier; 2020. p. 1-4653.
5. Volpe L, Burke M, Scenini F. Correlation between grain boundary migration and stress corrosion cracking of alloy 600 in hydrogenated steam. Acta Mater 2020;186:454-66.
6. Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.
7. Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci 2014;61:1-93.
8. He J, Wang H, Huang H, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 2016;102:187-96.
9. Shen Q, Kong X, Chen X. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties. J Mater Sci Mater Med 2021;74:136-42.
10. Zhang Y, Stocks GM, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun 2015;6:8736.
11. Zhang Y, Jin K, Xue H, et al. Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. J Mater Res 2016;31:2363-75.
12. Ullah MW, Xue H, Velisa G, et al. Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys. Sci Rep 2017;7:4146.
13. Ayyagari A, Salloom R, Muskeri S, Mukherjee S. Low activation high entropy alloys for next generation nuclear applications. Materialia 2018;4:99-103.
14. King D, Cheung S, Humphry-baker S, et al. High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Mater 2019;166:435-46.
15. Kareer A, Waite J, Li B, Couet A, Armstrong D, Wilkinson A. Short communication: ‘low activation, refractory, high entropy alloys for nuclear applications’. J Nucl Mater 2019;526:151744.
16. Xia SQ, Yang X, Yang TF, Liu S, Zhang Y. Irradiation resistance in Al x CoCrFeNi high entropy alloys. JOM 2015;67:2340-4.
18. Guo S, Liu C. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater 2011;21:433-46.
19. King D, Middleburgh S, Mcgregor A, Cortie M. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater 2016;104:172-9.
20. Dong B, Wang Z, Pan Z, et al. On the development of pseudo-eutectic AlCoCrFeNi2.1 high entropy alloy using Powder-bed Arc Additive Manufacturing (PAAM) process. Mater Sci Eng A Struct Mater 2021;802:140639.
21. Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater 2017;139:244-53.
22. Agrawal P, Thapliyal S, Nene S, Mishra R, Mcwilliams B, Cho K. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Addit Manuf 2020;32:101098.
23. Zhang Y, Zhou Y, Lin J, Chen G, Liaw P. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 2008;10:534-8.
24. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 2012;132:233-8.
25. Guo S, Hu Q, Ng C, Liu C. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics 2013;41:96-103.
26. Calvo-dahlborg M, Brown S. Hume-rothery for HEA classification and self-organizing map for phases and properties prediction. J Alloys Compd 2017;724:353-64.
27. Pradeep K, Tasan C, Yao M, Deng Y, Springer H, Raabe D. Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design. Mater Sci Eng A Struct Mater 2015;648:183-92.
28. Ma D, Yao M, Pradeep K, Tasan CC, Springer H, Raabe D. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater 2015;98:288-96.
29. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 2005;46:2817-29.
30. Kong D, Guo J, Liu R, et al. Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0.5 high entropy alloys. Intermetallics 2019;114:106560.
31. Zhang J, Hu Y, Wei Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders. J Alloys Compd 2020;827:154301.
32. Wang H, Zhu Z, Chen H, et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Mater 2020;196:609-25.
33. Yao H, Qiao J, Hawk J, Zhou H, Chen M, Gao M. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloys Compd 2017;696:1139-50.
34. Gurao N, Biswas K. In the quest of single phase multi-component multiprincipal high entropy alloys. J Alloys Compd 2017;697:434-42.
35. Ohsasa K, Narita T, Shinmura T. Numerical modeling of the transient liquid phase bonding process of Ni using Ni-B-Cr ternary filler metal. JPE 1999;20:199-206.
36. Xu W, Rivera-díaz-del-castillo P, Wang W, et al. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates. Acta Mater 2010;58:3582-93.
37. Barron P, Carruthers A, Fellowes J, Jones N, Dawson H, Pickering E. Towards V-based high-entropy alloys for nuclear fusion applications. Scr Mater 2020;176:12-6.
38. Esin V, Mallick R, Dadé M, Denand B, Delfosse J, Sallot P. Combined synchrotron X-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy. Mater Charact 2020;169:110654.
39. Wu B, Pan Z, Chen G, et al. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling. Sci Technol Weld Joi 2019;24:484-94.
40. Wang F, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol 2011;57:597-603.
41. Ma Y, Cuiuri D, Hoye N, Li H, Pan Z. Characterization of in-situ alloyed and additively manufactured titanium aluminides. Metall and Materi Trans B 2014;45:2299-303.
42. Qiu Z, Wu B, Zhu H, et al. Microstructure and mechanical properties of wire arc additively manufactured hastelloy C276 alloy. Mater Des 2020;195:109007.
43. Dong B, Pan Z, Shen C, Ma Y, Li H. Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process. Metall and Materi Trans B 2017;48:3143-51.
44. Haase C, Tang F, Wilms MB, Weisheit A, Hallstedt B. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys - towards rapid alloy screening and design. Mater Sci Eng A Struct Mater 2017;688:180-9.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.