1. Li H, Eddaoudi M, O'keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402:276-9.
2. Huo J, Marcello M, Garai A, Bradshaw D. MOF-polymer composite microcapsules derived from Pickering emulsions. Adv Mater 2013;25:2717-22.
3. Hou Y, Hu W, Gui Z, Hu Y. Preparation of metal-organic frameworks and their application as flame retardants for polystyrene. Ind Eng Chem Res 2017;56:2036-45.
4. Shi X, Dai X, Cao Y, Li J, Huo C, Wang X. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res 2017;56:3887-94.
5. Chen W, Jiang Y, Qiu R, Xu W, Hou Y. Investigation of UiO-66 as flame retardant and its application in improving fire safety of polystyrene. Macromol Res 2020;28:42-50.
6. Zhao S, Yin L, Zhou Q, Liu C, Zhou K. In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety. Appl Surf Sci 2020;506:144700.
7. Wang M, Song X, Jiang J, Xia J, Li M. Influence of zeolitic imidazolate framework-8 on the thermal stabilization of poly(vinyl chloride). Polym Degrad Stab 2018;149:112-8.
8. Nabipour H, Nie S, Wang X, Song L, Hu Y. Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants. Cellulose 2020;27:2237-51.
9. Nabipour H, Nie S, Wang X, Song L, Hu Y. Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy. Compos A Appl Sci Manuf 2020;129:105720.
10. Seidi F, Jouyandeh M, Taghizadeh M, et al. Metal-organic framework (MOF)/epoxy coatings: a review. Materials 2020;13:2881.
11. Sai T, Ran S, Guo Z, et al. Deposition growth of Zr-based MOFs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate. Compos B Eng 2020;197:108064.
12. Li A, Xu W, Chen R, Liu Y, Li W. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos A Appl Sci Manuf 2018;112:558-71.
13. Wang X, Wang S, Wang W, et al. The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups. Compos B Eng 2020;183:107568.
14. Xie J, Shi X, Zhang M, Dai X, Wang X. Improving the flame retardancy of polypropylene by nano metal-organic frameworks and bioethanol coproduct. Fire Mater 2019;43:373-80.
15. Zheng Y, Lu Y, Zhou K. A novel exploration of metal-organic frameworks in flame-retardant epoxy composites. J Therm Anal Calorim 2019;138:905-14.
16. Wang H, Qiao H, Guo J, et al. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos B Eng 2020;182:107498.
17. Cheng J, Ma D, Li S, Qu W, Wang D. Preparation of zeolitic imidazolate frameworks and their application as flame retardant and smoke suppression agent for rigid polyurethane foams. Polymers 2020;12:347.
18. Wang G, Xu W, Chen R, Li W, Liu Y, Yang K. Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite to improve the flame retardancy and smoke suppression of polyurethane elastomer. J Appl Polymer Sci 2020;137:48048.
19. Qian Z, Zou B, Xiao Y, et al. Targeted modification of black phosphorus by MIL-53(Al) inspired by “Cannikin's Law” to achieve high thermal stability of flame retardant polycarbonate at ultra-low additions. Compos B Eng 2022;238:109943.
20. Ma T, Wang W, Wang R. Thermal degradation and carbonization mechanism of Fe-based metal-organic frameworks onto flame-retardant polyethylene terephthalate. Polymers 2023;15:224.
21. Zhao H, Yuan B, Zhan Y, et al. Upgrading the pore-size scale of MIL-53 from microporous to macroporous for adsorbing triethyl phosphate and reducing the fire risk of polystyrene. Compos A Appl Sci Manuf 2022;159:107003.
22. Xu B, Xu W, Wang G, Liu L, Xu J. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym Adv Techs 2018;29:1733-43.
23. Sai T, Ran S, Guo Z, Fang Z. A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos B Eng 2019;176:107198.
24. Salmeia K, Fage J, Liang S, Gaan S. An overview of mode of action and analytical methods for evaluation of gas phase activities of flame retardants. Polymers 2015;7:504-26.
25. Molyneux S, Stec AA, Hull TR. The effect of gas phase flame retardants on fire effluent toxicity. Polym Degrad Stab 2014;106:36-46.
26. Schartel B, Perret B, Dittrich B, et al. Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol Mater Eng 2016;301:9-35.
27. Bao C, Guo Y, Yuan B, Hu Y, Song L. Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 2012;22:23057-63.
28. Xu Z, Xing W, Hou Y, et al. The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite. Combust Flame 2021;226:108-16.
29. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois Ph. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep 2009;63:100-25.
30. Ru J, Wang X, Wang F, Cui X, Du X, Lu X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: synthesis, applications and adsorption mechanism. Ecotoxicol Environ Saf 2021;208:111577.
31. Tomar S, Singh V. Review on synthesis and application of MIL-53. Mater Today Proc 2021;43:3291-6.
32. Şahin F, Topuz B, Kalıpçılar H. Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors. Microporous Mesoporous Mater 2018;261:259-67.
33. Lee Y, Jang M, Cho H, Kwon H, Kim S, Ahn W. ZIF-8: a comparison of synthesis methods. Chem Eng J 2015;271:276-80.
34. Bagi SD, Myerson AS, Román-leshkov Y. Solvothermal crystallization kinetics and control of crystal size distribution of MOF-808 in a continuous flow reactor. Cryst Growth Des 2021;21:6529-36.
35. Batten MP, Rubio-martinez M, Hadley T, et al. Continuous flow production of metal-organic frameworks. Curr Opin Chem Eng 2015;8:55-9.
36. Dunne PW, Lester E, Walton RI. Towards scalable and controlled synthesis of metal-organic framework materials using continuous flow reactors. React Chem Eng 2016;1:352-60.
37. Amery N, Abid H, Al-saadi S, Wang S, Liu S. Facile directions for synthesis, modification and activation of MOFs. Mater Today Chem 2020;17:100343.
38. Liu X, Xie L, Wu Y. Recent advances in the shaping of metal-organic frameworks. Inorg Chem Front 2020;7:2840-66.
39. Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. New synthetic routes towards MOF production at scale. Chem Soc Rev 2017;46:3453-80.
40. Bagi S, Yuan S, Rojas-buzo S, Shao-horn Y, Román-leshkov Y. A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808. Green Chem 2021;23:9982-91.
41. Kochetygov I, Roth J, Espín J, et al. A simple, transition metal catalyst-free method for the design of complex organic building blocks used to construct porous metal-organic frameworks. Angew Chem Int Ed Eng 2023;62:e202215595.
42. Shen R, Quan Y, Zhang Z, Ma R, Wang Q. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene. Ind Eng Chem Res 2022;61:7292-302.
43. Xu Y, Zhou R, Ma G, et al. Preparation of a cobalt metal-organic framework (Co-MOF) and its application as a polypropylene flame retardant by compounding with melamine polyphosphate. Polym Test 2022;116:107765.
44. Chen X, Chen X, Li S, Jiao C. Copper metal-organic framework toward flame-retardant enhancement of thermoplastic polyurethane elastomer composites based on ammonium polyphosphate. Polym Adv Technol 2021;32:2829-42.
45. Li H, Meng D, Qi P, et al. Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@SEP) for reducing the fire hazards in thermoplastic polyurethane. Appl Clay Sci 2022;216:106376.
46. Liu Q, Wang H, Li H, Sun J, Gu X, Zhang S. Constructing a novel synergistic flame retardant by hybridization of zeolitic imidazolate framework-67 and graphene oxide for thermoplastic polyurethane. Poly Adv Technol 2022;33:2374-85.
47. Yue Z, Lin J, Yang D, et al. In situ growth of nano-MOFs on ammonium polyphosphate particles for boosting flame retardancy, smoke suppression and mechanical properties of epoxy. J Mater Sci 2022;57:20082-94.
48. Jiang J, Huo S, Zheng Y, et al. A novel synergistic flame retardant of hexaphenoxycyclotriphosphazene for epoxy resin. Polymers 2021;13:3648.
49. Quan Y, Shen R, Schweizer C, et al. Synergistic effects of zeolitic imidazolate frameworks (ZIFs) with different transition metals on intumescent flame-retarded polypropylene composites: a comparative study. J Mater Sci Technol 2023;155:102-10.
50. Escobar-hernandez HU, Shen R, Papadaki MI, Powell JA, Zhou H, Wang Q. Hazard evaluation of metal-organic framework synthesis and scale-up: a laboratory safety perspective. ACS Chem Health Saf 2021;28:358-68.
51. Quan Y, Parker TF, Hua Y, Jeong H, Wang Q. Process elucidation and hazard analysis of the metal-organic framework scale-up synthesis: a case study of ZIF-8. Ind Eng Chem Res 2023;62:5035-41.
52. Quan Y, Shen R, Ma R, Zhang Z, Wang Q. Sustainable and efficient manufacturing of metal-organic framework-based polymer nanocomposites by reactive extrusion. ACS Sustain Chem Eng 2022;10:7216-22.
53. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.
54. Murdock AT, Koos A, Britton TB, et al. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2013;7:1351-9.
55. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 2008;3:563-8.
56. Agarwal V, Zetterlund PB. Strategies for reduction of graphene oxide - a comprehensive review. Chem Eng J 2021;405:127018.
57. Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization. Nat Nanotechnol 2014;9:730-4.
58. Milana S. The lab-to-fab journey of 2D materials. Nat Nanotechnol 2019;14:919-21.
59. Zhou Y, Qiu S, Chu F, et al. High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: enhanced adsorption, mechanical and fire safety properties. J Colloid Interface Sci 2022;609:794-806.
60. Piao J, Lu M, Ren J, et al. MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water separation: Interface engineering design based on bioinspiration. J Hazard Mater 2023;444:130398.
61. Zhao X, Qiu H, Shao Y, et al. Silver nanoparticle-modified 2D MOF nanosheets for photothermally enhanced silver ion release antibacterial treatment. Acta Physico Chimica Sinica 2023;39:2211043.
62. Majidi R, Keramatinia M, Ramezanzadeh B, Ramezanzadeh M. Weathering resistance (UV-shielding) improvement of a polyurethane automotive clear-coating applying metal-organic framework (MOF) modified GO nano-flakes (GO-ZIF-7). Polym Degrad Stab 2023;207:110211.
63. Wang C, Kim J, Tang J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020;6:19-40.
64. Ren J, Huang Y, Zhu H, et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2020;2:176-202.
65. Marpaung F, Kim M, Khan JH, et al. Metal-organic framework (MOF)-derived nanoporous carbon materials. Chem Asian J 2019;14:1331-43.
66. Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 2013;1:14-9.
67. Hou Y, Xu Z, Chu F, et al. A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Compos B Eng 2021;221:109014.
68. Sai T, Su Y, Shen H, et al. Fabrication and mechanism study of cerium-based P, N-containing complexes for reducing fire hazards of polycarbonate with superior thermostability and toughness. ACS Appl Mater Interfaces 2021;13:30061-75.
69. Lu X, Lee AF, Gu X. Improving the flame retardancy of sustainable lignin-based epoxy resins using phosphorus/nitrogen treated cobalt metal-organic frameworks. Mater Today Chem 2022;26:101184.
70. Zulys A, Yulia F, Muhadzib N, Nasruddin. Biological metal-organic frameworks (Bio-MOFs) for CO2 capture. Ind Eng Chem Res 2021;60:37-51.
71. Nabipour H, Qiu S, Wang X, Song L, Hu Y. Adenine as an efficient adsorbent for zinc ions removal from wastewater to in situ form bio-based metal-organic frameworks: a novel approach to preparing fire-safe polymers. Compos A Appl Sci Manuf 2022;161:107099.
72. Zhou Y, Tawiah B, Noor N, et al. A facile and sustainable approach for simultaneously flame retarded, UV protective and reinforced poly(lactic acid) composites using fully bio-based complexing couples. Compos B Eng 2021;215:108833.
73. Hamisu AM, Ariffin A, Wibowo AC. Cation exchange in metal-organic frameworks (MOFs): the hard-soft acid-base (HSAB) principle appraisal. Inorganica Chim Acta 2020;511:119801.
74. Bao S, Li J, Guan B, Jia M, Terasaki O, Yu J. A green selective water-etching approach to MOF@mesoporous SiO2 yolk-shell nanoreactors with enhanced catalytic stabilities. Matter 2020;3:498-508.
75. Lee S, Oh S, Oh M. Atypical hybrid metal-organic frameworks (MOFs): a combinative process for MOF-on-MOF growth, etching, and structure transformation. Angew Chem 2020;132:1343-9.
76. Narciso J, Ramos-fernandez EV, Delgado-marín JJ, Affolter CW, Olsbye U, Redekop EA. New route for the synthesis of Co-MOF from metal substrates. Microporous Mesoporous Mater 2021;324:111310.
77. Zhang Z, Li X, Yuan Y, Pan YT, Wang DY, Yang R. Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites. ACS Appl Mater Interfaces 2019;11:40951-60.
78. Hou B, Song K, Ur Rehman Z, et al. Precise control of a yolk-double shell metal-organic framework-based nanostructure provides enhanced fire safety for epoxy nanocomposites. ACS Appl Mater Interfaces 2022;14:14805-16.
79. Song K, Zhang H, Pan YT, et al. Metal-organic framework-derived bird's nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites. J Colloid Interface Sci 2023;643:489-501.
80. Song K, Li X, Pan Y, et al. The influence on flame retardant epoxy composites by a bird’s nest-like structure of Co-based isomers evolved from zeolitic imidazolate framework-67. Polym Degrad Stab 2023;211:110318.
81. Hou B, Zhang W, Lu H, et al. Multielement flame-retardant system constructed with metal POSS-organic frameworks for epoxy resin. ACS Appl Mater Interfaces 2022;14:49326-37.
82. Song K, Hou B, Ur Rehman Z, et al. “Sloughing” of metal-organic framework retaining nanodots via step-by-step carving and its flame-retardant effect in epoxy resin. Chem Eng J 2022;448:137666.
83. Wang X, Chen Q, Zheng Y, Hong M, Fu H. Study on novel flame retarded LDH-TDI-HEA-VTES-acrylate composites and their flame retardant mechanism. React Funct Polym 2020;147:104371.
84. Wang H, Li X, Su F, et al. Core-shell ZIF67@ZIF8 modified with phytic acid as an effective flame retardant for improving the fire safety of epoxy resins. ACS Omega 2022;7:21664-74.
85. Hou Y, Chu F, Ma S, Hu Y, Hu W, Gui Z. Rapid synthesis of oxygen-rich covalent C2N (CNO) nanosheets by sacrifice of HKUST-1: advanced metal-free nanofillers for polymers. ACS Appl Mater Interfaces 2018;10:32688-97.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.